论文标题

演示被困的量子 - CCD计算机体系结构

Demonstration of the trapped-ion quantum-CCD computer architecture

论文作者

Pino, J. M., Dreiling, J. M., Figgatt, C., Gaebler, J. P., Moses, S. A., Allman, M. S., Baldwin, C. H., Foss-Feig, M., Hayes, D., Mayer, K., Ryan-Anderson, C., Neyenhuis, B.

论文摘要

被困的QCCD(量子电荷耦合设备)体系结构提案为通用量子计算机提供了蓝图。该设计始于在二维表面上图案的电极,该电极配置为捕获多个离子(或离子晶体)的阵列。离子晶体网络中的通信允许将机器缩放,同时将每个晶体中的离子数量保持在少量数字,从而保留陷阱离子实验中所示的低错误率。通过提议通过将离子穿过空间与其他遥远离子进行交互来传达量子信息,该体系结构创建了具有完整连接性的量子计算机。但是,这款完全连接的计算机的工程引入了许多困难,这些困难排除了自提案以来二十年来完全实现的架构。使用Honeywell的低温表面陷阱,我们报告了将QCCD结构的所有必要成分集成到可编程的捕获离子量子计算机中。使用四个和六个Qubit电路,通过使用中路测量值和量子体积测量为$ 2^6 = 64 $,通过传递的CNOT门的保真度来量化处理器的系统水平性能。通过证明在小离子晶体中可达到的低错误率可以通过可扩展的陷阱设计,并行光学输送和快速离子传输成功整合,QCCD结构被证明是通往大量子计算机的可行途径。原子离子提供完全相同的高保真量子。我们的工作表明,围绕这些量子位构建的QCCD体系结构将提供高性能量子计算机,这可能使重要的近期示范,例如量子误差校正和量子优势。

The trapped-ion QCCD (quantum charge-coupled device) architecture proposal lays out a blueprint for a universal quantum computer. The design begins with electrodes patterned on a two-dimensional surface configured to trap multiple arrays of ions (or ion crystals). Communication within the ion crystal network allows for the machine to be scaled while keeping the number of ions in each crystal to a small number, thereby preserving the low error rates demonstrated in trapped-ion experiments. By proposing to communicate quantum information by moving the ions through space to interact with other distant ions, the architecture creates a quantum computer endowed with full-connectivity. However, engineering this fully-connected computer introduces a host of difficulties that have precluded the architecture from being fully realized in the twenty years since its proposal. Using a Honeywell cryogenic surface trap, we report on the integration of all necessary ingredients of the QCCD architecture into a programmable trapped-ion quantum computer. Using four and six qubit circuits, the system level performance of the processor is quantified by the fidelity of a teleported CNOT gate utilizing mid-circuit measurement and a quantum volume measurement of $2^6=64$. By demonstrating that the low error rates achievable in small ion crystals can be successfully integrated with a scalable trap design, parallel optical delivery, and fast ion transport, the QCCD architecture is shown to be a viable path toward large quantum computers. Atomic ions provide perfectly identical, high-fidelity qubits. Our work shows that the QCCD architecture built around these qubits will provide high performance quantum computers, likely enabling important near-term demonstrations such as quantum error correction and quantum advantage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源