论文标题

准确的$ p $ - 价值计算,用于依赖的通用Fisher组合测试

Accurate $p$-Value Calculation for Generalized Fisher's Combination Tests Under Dependence

论文作者

Zhang, Hong, Wu, Zheyang

论文摘要

将依赖性测试结合起来具有广泛的应用,但是$ p $ - 价值计算具有挑战性。当前的矩匹配方法(例如,Fisher组合测试的Brown的近似值)往往会在低于0.05的水平上显着夸大I型错误率。它可能导致大数据分析中的重大错误发现。本文为Fisher型统计数据(称为Gfisher)提供了几种更准确和计算上有效的$ P $值计算方法。 Gfisher涵盖了Fisher的组合,Good的统计数据,兰开斯特的统计数据,加权Z分数组合等。它允许灵活的加权方案以及综合程序,该程序自动适应了适当的权重和自由度,以适应给定数据。新的$ p $ - 价值计算方法基于矩比匹配和联合分布代理的新思想。系统的模拟表明,在多元高斯下,它们是准确的,并且在广义线性模型和多元$ t $ - 分布下稳健,至少为$ 10^{ - 6} $ latver。我们说明了GFISHER和新的$ P $值计算方法在分析基于基因基于基因的SNP-Set关联研究中的模拟和真实数据中的有用性。相关计算已在r软件包$ gfisher $中实施。

Combining dependent tests of significance has broad applications but the $p$-value calculation is challenging. Current moment-matching methods (e.g., Brown's approximation) for Fisher's combination test tend to significantly inflate the type I error rate at the level less than 0.05. It could lead to significant false discoveries in big data analyses. This paper provides several more accurate and computationally efficient $p$-value calculation methods for a general family of Fisher type statistics, referred as the GFisher. The GFisher covers Fisher's combination, Good's statistic, Lancaster's statistic, weighted Z-score combination, etc. It allows a flexible weighting scheme, as well as an omnibus procedure that automatically adapts proper weights and degrees of freedom to a given data. The new $p$-value calculation methods are based on novel ideas of moment-ratio matching and joint-distribution surrogating. Systematic simulations show that they are accurate under multivariate Gaussian, and robust under the generalized linear model and the multivariate $t$-distribution, down to at least $10^{-6}$ level. We illustrate the usefulness of the GFisher and the new $p$-value calculation methods in analyzing both simulated and real data of gene-based SNP-set association studies in genetics. Relevant computation has been implemented into R package $GFisher$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源