论文标题

R2D2-GAN的无限分辨率图像生成

Unlimited Resolution Image Generation with R2D2-GANs

论文作者

Jegorova, Marija, Karjalainen, Antti Ilari, Vazquez, Jose, Hospedales, Timothy M.

论文摘要

在本文中,我们提出了一种新型的模拟技术,用于生成任何预定义分辨率的高质量图像。该方法可用于合成相当于在全长任务中收集的大小的声纳扫描,并具有任何选择幅度的轨道分辨率。从本质上讲,我们的模型将基于生成的对抗网络(GAN)架构扩展到条件递归设置,从而有助于生成的图像的连续性。产生的数据是连续的,现实的,也可以比具有更高分辨率的声纳的实际获取速度(例如Edgetech)快两倍。海底地形可以由用户完全控制。视觉评估测试表明,人类无法将模拟图像与真实区分开。此外,实验结果表明,在没有真实数据的情况下,自主识别系统可以从R2D2-GAN产生的合成数据培训中受益匪浅。

In this paper we present a novel simulation technique for generating high quality images of any predefined resolution. This method can be used to synthesize sonar scans of size equivalent to those collected during a full-length mission, with across track resolutions of any chosen magnitude. In essence, our model extends Generative Adversarial Networks (GANs) based architecture into a conditional recursive setting, that facilitates the continuity of the generated images. The data produced is continuous, realistically-looking, and can also be generated at least two times faster than the real speed of acquisition for the sonars with higher resolutions, such as EdgeTech. The seabed topography can be fully controlled by the user. The visual assessment tests demonstrate that humans cannot distinguish the simulated images from real. Moreover, experimental results suggest that in the absence of real data the autonomous recognition systems can benefit greatly from training with the synthetic data, produced by the R2D2-GANs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源