论文标题

扩展机器人系统的多基础增强学习:学习自适应稀疏通信图

Scaling Up Multiagent Reinforcement Learning for Robotic Systems: Learn an Adaptive Sparse Communication Graph

论文作者

Sun, Chuangchuang, Shen, Macheng, How, Jonathan P.

论文摘要

多基因系统中多重增强学习(MARL)的复杂性相对于代理数量而成倍增加。此可伸缩性问题阻止MAR被应用于大规模的多种系统。但是,MAL中通常忽略的一个关键特征是代理之间的相互作用很少。在不利用这种稀疏结构的情况下,现有的作品从所有代理中汇总了信息,因此具有很高的样本复杂性。为了解决这个问题,我们通过推广稀疏性激活函数提出了一种自适应的稀疏注意机制。然后,基于这种新的注意机制,图形神经网络在MAL中学习了稀疏的通信图。通过这种稀疏性结构,只有选择性地参与最重要的代理,因此MALL问题的规模降低而最佳最佳性却很少损害,代理只能通过有效和有效的方式进行有效和有效的方式进行交流。比较结果表明,我们的算法可以学习一种可解释的稀疏结构,并通过涉及大规模多构成系统的应用的显着余地优于以前的作品。

The complexity of multiagent reinforcement learning (MARL) in multiagent systems increases exponentially with respect to the agent number. This scalability issue prevents MARL from being applied in large-scale multiagent systems. However, one critical feature in MARL that is often neglected is that the interactions between agents are quite sparse. Without exploiting this sparsity structure, existing works aggregate information from all of the agents and thus have a high sample complexity. To address this issue, we propose an adaptive sparse attention mechanism by generalizing a sparsity-inducing activation function. Then a sparse communication graph in MARL is learned by graph neural networks based on this new attention mechanism. Through this sparsity structure, the agents can communicate in an effective as well as efficient way via only selectively attending to agents that matter the most and thus the scale of the MARL problem is reduced with little optimality compromised. Comparative results show that our algorithm can learn an interpretable sparse structure and outperforms previous works by a significant margin on applications involving a large-scale multiagent system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源