论文标题

Lindley递归的乘法版本

A Multiplicative Version of the Lindley Recursion

论文作者

Boxma, Onno, Löpker, Andreas, Mandjes, Michel, Palmowski, Zbigniew

论文摘要

本文介绍了随机递归的分析$ w_ {i+1} = [v_iw_i+y_i]^+$,可以解释为第1订单的自动回归过程,反映在0。我们通过对模型的稳定性条件的讨论开始我们的博览会。写作$ y_i = b_i-a_i $,对于非阴性i.i.d. \ \随机变量的独立序列$ \ {a_i \} _ {i \ in n_0} $和$ \ {b_i \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {i \ in_0} $}是I.I.D.序列也(独立于$ \ {a_i \} _ {i \ in n_0} $和$ \ {b_i \} _ {i \ in n_0} $),然后我们考虑三个特殊情况:(i)$ v_i $仅获得负值,并且只有$ b_i $ proganty probity proginal a $ equ a $ equ a $ equ a $ vi a $ vi a $ vi a $ vi a $ vi a $ vi a $ vi a $ vi a $ vi a $ vi a $ vi a $ Vi a $ vi a $ vi a $ vi a $ vi a。 $ p \ in(0,1)$,否则为负,$ a_i $和$ b_i $均具有合理的lst,(iii)$ v_i $均在$ [0,1] $上均匀分发,并且$ a_i $均为指数分布。在所有三种情况下,我们得出瞬态和固定结果,其中瞬态结果是根据几何分布的时期的变换而言。

This paper presents an analysis of the stochastic recursion $W_{i+1} = [V_iW_i+Y_i]^+$ that can be interpreted as an autoregressive process of order 1, reflected at 0. We start our exposition by a discussion of the model's stability condition. Writing $Y_i=B_i-A_i$, for independent sequences of non-negative i.i.d.\ random variables $\{A_i\}_{i\in N_0}$ and $\{B_i\}_{i\in N_0}$, and assuming $\{V_i\}_{i\in N_0}$ is an i.i.d. sequence as well (independent of $\{A_i\}_{i\in N_0}$ and $\{B_i\}_{i\in N_0}$), we then consider three special cases: (i) $V_i$ attains negative values only and $B_i$ has a rational LST, (ii) $V_i$ equals a positive value $a$ with certain probability $p\in (0,1)$ and is negative otherwise, and both $A_i$ and $B_i$ have a rational LST, (iii) $V_i$ is uniformly distributed on $[0,1]$, and $A_i$ is exponentially distributed. In all three cases we derive transient and stationary results, where the transient results are in terms of the transform at a geometrically distributed epoch.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源