论文标题

光的高阶量子自旋厅效应

Higher-order Quantum Spin Hall Effect of Light

论文作者

Xie, Biye, Su, Guangxu, Wang, Hong-Fei, Liu, Feng, Hu, Lumang, Yu, Si-Yuan, Zhan, Peng, Lu, Ming-Hui, Wang, Zhenlin, Chen, Yan-Feng

论文摘要

光子的带拓扑和相关自旋(或相关的自旋(或伪旋转)物理学为我们提供了操纵光的新维度,这对于信息通信和数据存储可能有用。尤其是光的量子自旋大厅的效应,其中电磁波沿着具有强旋摩肌锁定的样品的表面传播,为实现拓扑受保护的光子自旋传输铺平了道路。最近,频段拓扑的常规散装对应关系已扩展到高阶案例,这些案例可以探索具有大于1个(例如铰链和角状状态)的拓扑状态。在这里,我们第一次通过使用全电型C6V对称光子晶体来证明光的较高量子旋转霍尔效应。由于非平凡的高阶拓扑和有限的自旋旋转耦合,我们观察到具有相反伪旋转极化的角状态。通过应用自旋极化激发源,我们可以通过自旋摩托杆锁的边缘状态选择性地激发不同空间位置的角状态,以高阶的方式类似于量子自旋霍尔效应。我们的工作打破了自旋光子学和高阶拓扑之间的障碍,为研究较低维度的经典表面波的前沿开辟了前沿,并支持稳健的通信中的探索。

Band topology and related spin (or pseudo-spin) physics of photons provide us with a new dimension for manipulating light, which is potentially useful for information communication and data storage. Especially, the quantum spin Hall effect of light, where electromagnetic waves propagate along surfaces of samples with strong spin-momentum locking, paves the way for achieving topologically protected photonic spin transport. Recently, the conventional bulk-edge correspondence of the band topology has been extended to higher-order cases that enables the explorations of topological states with codimensions larger than 1 such as hinge and corner states. Here, for the first time, we demonstrate a higherorder quantum spin Hall effect of light by utilizing an all-dielectric C6v-symmetric photonic crystal. We observe corner states with opposite pseudospin polarizations at different corners owing to nontrivial higher-order topology and finite spin-spin coupling. By applying the spin-polarized excitation sources, we can selectively excite the corner states at different spatial positions through spin-momentum-locked decaying edge states, resembling the quantum spin Hall effect in a higher-order manner. Our work which breaks the barriers between the spin photonics and higher-order topology opens the frontiers for studying lower-dimensional spinful classical surface waves and supports explorations in robust communications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源