论文标题
某些加权方向图的无混合性
Unmixedness of some weighted oriented graphs
论文作者
论文摘要
令$ d =(g,\ mathcal {o},w)$为加权方向的图形,其边缘理想为$ i(d)$。在本文中,我们描述了以下每种情况的$ i(d)$的未混合属性:$ g $是$ scq $ graph; $ g $是和弦图; $ g $是一个简单的图形; $ g $是一个完美的图表; $ g $没有$ 4 $ - 或$ 5 $ -CYCLE; $ g $是一个图形,没有$ 3 $ - 和$ 5 $ -CYCLE;和$ {\ rm girth}(g)\ geqslant 5 $。
Let $D=(G,\mathcal{O},w)$ be a weighted oriented graph whose edge ideal is $I(D)$. In this paper, we characterize the unmixed property of $I(D)$ for each one of the following cases: $G$ is an $SCQ$ graph; $G$ is a chordal graph; $G$ is a simplicial graph; $G$ is a perfect graph; $G$ has no $4$- or $5$-cycles; $G$ is a graph without $3$- and $5$-cycles; and ${\rm girth}(G)\geqslant 5$.