论文标题
在块状环境中,电子的同步加速器辐射扩展到非常高的能量
Extension of the synchrotron radiation of electrons to very high energies in clumpy environments
论文作者
论文摘要
相对论电子的同步加速器冷却是天体物理学中最有效的辐射机制之一。它不仅伴随着粒子加速度的过程,而且还具有对父电子能量分布形成的反馈。电子的辐射冷却时间随着能量而减小为$ t _ {\ rm syn} \ propto 1/e $;相应地,整体辐射效率随着能量而增加。另一方面,这种效果严格限制了单个光子的最大能量。即使在所谓的极端加速器中,加速度以最高的速度进行,$ t _ {\ rm acc}^{ - 1} = ebc/e $允许在理想的磁性流血动力学等离子体中允许,同步辐射的理想磁流失动力学等血浆,同步辐射无法远远超出电子质量的特征性simb和files sims sim} nmak sim}。 m_e c^2/α\ sim 70 \ rm \,mev $。 在本文中,我们提出了一个模型,其中同步辐射的形成发生在位于粒子加速器内部的紧凑型磁斑点中,并开发出形式主义,以计算从该系统中出现的同步辐射。我们证明,对于表征加速器和磁性斑点的参数的某些组合,同步加速器辐射可以延伸到该限制的范围以上几个数量级。这种情况需要粒子加速器的弱磁化,并有效地将气体内能转化为足够小的斑点中的磁能。斑点的所需尺寸受到磁镜效应的约束,这可以防止粒子在某些条件下渗透到强磁场的区域。
The synchrotron cooling of relativistic electrons is one of the most effective radiation mechanisms in astrophysics. It not only accompanies the process of particle acceleration but also has feedback on the formation of the energy distribution of the parent electrons. The radiative cooling time of electrons decreases with energy as $t_{\rm syn} \propto 1/E$; correspondingly the overall radiation efficiency increases with energy. On the other hand, this effect strictly limits the maximum energy of individual photons. Even in the so-called extreme accelerators, where the acceleration proceeds at the highest possible rate, $t_{\rm acc}^{-1} = eBc/E$, allowed in an ideal magnetohydrodynamic plasma, the synchrotron radiation cannot extend well beyond the characteristic energy determined by the electron mass and the fine-structure constant: $h ν^{\rm max} \sim m_e c^2/α\sim 70 \rm\,MeV$. In this paper, we propose a model in which the formation of synchrotron radiation takes place in compact magnetic blobs located inside the particle accelerator and develop a formalism for calculations of synchrotron radiation emerging from such systems. We demonstrate that for certain combinations of parameters characterizing the accelerator and the magnetic blobs, the synchrotron radiation can extend beyond this limit by a several orders of magnitude. This scenario requires a weak magnetization of the particle accelerator, and an efficient conversion of gas internal energy into magnetic energy in sufficiently small blobs. The required size of the blobs is constrained by the magnetic mirroring effect, that can prevent particle penetration into the regions of strong magnetic field under certain conditions.