论文标题
重新访问全市人群流量分析的卷积神经网络
Revisiting Convolutional Neural Networks for Citywide Crowd Flow Analytics
论文作者
论文摘要
全市人群流量分析对于智慧城市的努力至关重要。它旨在根据历史观察结果对城市中每个地区的人群流动(例如流入和流出)进行建模。如今,卷积神经网络(CNN)因其捕获空间依赖性的能力而被基于栅格的人群流量分析广泛采用。在对不同分析任务的基于CNN的方法进行了重新访问之后,我们在现有用途中暴露了两个常见的关键缺点:1)学习全局空间依赖性的效率低下,以及2)忽略潜在区域功能。为了应对这些挑战,在本文中,我们提出了一个名为Deeplgr的新颖框架,可以轻松地将其推广以解决各种全市人群流量分析问题。该框架由三个部分组成:1)一个局部特征提取模块,用于学习每个区域的表示形式; 2)一个全局上下文模块,用于提取全局上下文先验并进行示例以生成全局功能; 3)基于张量分解的区域特异性预测指标,可为每个区域提供自定义的预测,这与以前的方法相比非常有效。对两个典型人群流分析任务进行的广泛实验证明了我们框架的有效性,稳定性和一般性。
Citywide crowd flow analytics is of great importance to smart city efforts. It aims to model the crowd flow (e.g., inflow and outflow) of each region in a city based on historical observations. Nowadays, Convolutional Neural Networks (CNNs) have been widely adopted in raster-based crowd flow analytics by virtue of their capability in capturing spatial dependencies. After revisiting CNN-based methods for different analytics tasks, we expose two common critical drawbacks in the existing uses: 1) inefficiency in learning global spatial dependencies, and 2) overlooking latent region functions. To tackle these challenges, in this paper we present a novel framework entitled DeepLGR that can be easily generalized to address various citywide crowd flow analytics problems. This framework consists of three parts: 1) a local feature extraction module to learn representations for each region; 2) a global context module to extract global contextual priors and upsample them to generate the global features; and 3) a region-specific predictor based on tensor decomposition to provide customized predictions for each region, which is very parameter-efficient compared to previous methods. Extensive experiments on two typical crowd flow analytics tasks demonstrate the effectiveness, stability, and generality of our framework.