论文标题
用户生成的视频中的情感识别的端到端视觉审计注意网络
An End-to-End Visual-Audio Attention Network for Emotion Recognition in User-Generated Videos
论文作者
论文摘要
用户生成的视频中的情感识别在以人为本的计算中起着重要作用。现有方法主要采用传统的两阶段浅水管道,即提取视觉和/或音频功能以及培训分类器。在本文中,我们建议基于卷积神经网络(CNN)以端到端方式识别视频情绪。具体而言,我们将深层视觉ADIO注意网络(VAANET)开发出来,这是一种新颖的结构,将空间,频道和时间关注整合到视觉3D CNN中,并将时间关注纳入音频2D CNN。此外,我们设计了特殊的分类损失,即基于极性情感层次结构约束,以指导注意力集中。在具有挑战性的VideoMotion-8和Ekman-6数据集上进行的广泛实验表明,所提出的Vaanet优于视频情感识别的最新方法。我们的源代码在以下网址发布:https://github.com/maysonma/vaanet。
Emotion recognition in user-generated videos plays an important role in human-centered computing. Existing methods mainly employ traditional two-stage shallow pipeline, i.e. extracting visual and/or audio features and training classifiers. In this paper, we propose to recognize video emotions in an end-to-end manner based on convolutional neural networks (CNNs). Specifically, we develop a deep Visual-Audio Attention Network (VAANet), a novel architecture that integrates spatial, channel-wise, and temporal attentions into a visual 3D CNN and temporal attentions into an audio 2D CNN. Further, we design a special classification loss, i.e. polarity-consistent cross-entropy loss, based on the polarity-emotion hierarchy constraint to guide the attention generation. Extensive experiments conducted on the challenging VideoEmotion-8 and Ekman-6 datasets demonstrate that the proposed VAANet outperforms the state-of-the-art approaches for video emotion recognition. Our source code is released at: https://github.com/maysonma/VAANet.