论文标题

风险标准:一个分钟级的全市交通事故预测框架

RiskOracle: A Minute-level Citywide Traffic Accident Forecasting Framework

论文作者

Zhou, Zhengyang, Wang, Yang, Xie, Xike, Chen, Lianliang, Liu, Hengchang

论文摘要

实时交通事故预测对于公共安全和城市管理(例如,实时安全路线计划和紧急响应部署)越来越重要。以前的偶然预测的工作通常是在小时级别上进行的,利用存在静态区域相关性的神经网络。但是,当预测步骤的粒度改善,因为道路网络的高度动态性质以及一个训练样本中事故记录的固有性,这仍然是具有挑战性的,这导致了偏见的结果和零充气的问题。在这项工作中,我们提出了一个新颖的框架风险,以将预测颗粒状提高到微小水平。具体而言,我们首先转换标签中的零风险值以适合训练网络。然后,我们提出了差异时变图形神经网络(DTGN),以捕获流量状态和动态间接间相关性的直接变化。此外,我们采用多任务和地区选择计划来突出全市最明显的事故区域,弥合了偏见的风险价值与零星事故分布之间的差距。在两个现实世界数据集上进行了广泛的实验,证明了我们风险框架框架的有效性和可扩展性。

Real-time traffic accident forecasting is increasingly important for public safety and urban management (e.g., real-time safe route planning and emergency response deployment). Previous works on accident forecasting are often performed on hour levels, utilizing existed neural networks with static region-wise correlations taken into account. However, it is still challenging when the granularity of forecasting step improves as the highly dynamic nature of road network and inherent rareness of accident records in one training sample, which leads to biased results and zero-inflated issue. In this work, we propose a novel framework RiskOracle, to improve the prediction granularity to minute levels. Specifically, we first transform the zero-risk values in labels to fit the training network. Then, we propose the Differential Time-varying Graph neural network (DTGN) to capture the immediate changes of traffic status and dynamic inter-subregion correlations. Furthermore, we adopt multi-task and region selection schemes to highlight citywide most-likely accident subregions, bridging the gap between biased risk values and sporadic accident distribution. Extensive experiments on two real-world datasets demonstrate the effectiveness and scalability of our RiskOracle framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源