论文标题
基于视觉的身体手势元特征用于情感计算
Vision based body gesture meta features for Affective Computing
论文作者
论文摘要
早期发现心理困扰是有效治疗的关键。自动检测困扰(例如抑郁症)是一个积极的研究领域。当前的方法利用了人声,面部和身体方式。其中,身体模态的研究最少,部分原因是难以从视频中提取身体表现,部分原因是由于缺乏可行的数据集。现有的身体方式方法使用表达式自动分类来表示肢体语言为一系列特定表达式,就像自然语言中的单词一样。在本文中,我提出了一种新型的特征,它在体型中代表了手势的元信息(例如速度),并使用它来预测非临床抑郁症标签。这与现有的工作不同,将整体行为表示为一组从一个人的运动中得出的一小组汇总元特征。在我的方法中,我从视频中提取姿势估计,检测身体部位内的手势,从各个手势中提取元信息,最后汇总这些功能以生成一个小型功能向量,以用于预测任务。我介绍了一个新的数据集,其中包含65张带有自我评估困扰,个性和人口标签的访谈录制视频。该数据集使使用整个机构在遇险检测任务中的特征开发。我评估了我新引入的元功能,以预测抑郁症,焦虑,感知压力,躯体压力,五个标准人格措施和性别。基于这些功能的基于线性回归的分类器可在我的新型数据集中预测抑郁症的F1分数为82.70%。
Early detection of psychological distress is key to effective treatment. Automatic detection of distress, such as depression, is an active area of research. Current approaches utilise vocal, facial, and bodily modalities. Of these, the bodily modality is the least investigated, partially due to the difficulty in extracting bodily representations from videos, and partially due to the lack of viable datasets. Existing body modality approaches use automatic categorization of expressions to represent body language as a series of specific expressions, much like words within natural language. In this dissertation I present a new type of feature, within the body modality, that represents meta information of gestures, such as speed, and use it to predict a non-clinical depression label. This differs to existing work by representing overall behaviour as a small set of aggregated meta features derived from a person's movement. In my method I extract pose estimation from videos, detect gestures within body parts, extract meta information from individual gestures, and finally aggregate these features to generate a small feature vector for use in prediction tasks. I introduce a new dataset of 65 video recordings of interviews with self-evaluated distress, personality, and demographic labels. This dataset enables the development of features utilising the whole body in distress detection tasks. I evaluate my newly introduced meta-features for predicting depression, anxiety, perceived stress, somatic stress, five standard personality measures, and gender. A linear regression based classifier using these features achieves a 82.70% F1 score for predicting depression within my novel dataset.