论文标题

多旋转相互作用模式在车道变化场景中的时空学习

Spatiotemporal Learning of Multivehicle Interaction Patterns in Lane-Change Scenarios

论文作者

Zhang, Chengyuan, Zhu, Jiacheng, Wang, Wenshuo, Xi, Junqiang

论文摘要

对共同挑战的互动场景的解释可以使根据自动驾驶汽车的决策受益。先前的研究使用他们对特定方案的先验知识通过预定义的模型来实现这一目标,从而限制了它们的适应能力。本文描述了一种贝叶斯非参数方法,该方法利用了连续的(即高斯过程)和离散(即dirichlet过程)随机过程,以揭示自我车辆与附近其他车辆的基本相互作用模式。我们的模型通过基于高斯工艺开发加速敏感的速度场来放松对周围车辆数量的依赖。实验结果表明,速度场可以代表自我车辆及其周围环境之间的空间相互作用。然后,开发了一个离散的贝叶斯非参数模型,该模型集成了Dirichlet过程和隐藏的Markov模型,以通过将顺序相互作用数据分割和聚类自动分割为可解释的粒状模式来学习时间空间上的相互作用模式。然后,我们使用从现实世界设置收集的Higd数据集在高速公路车道变化方案中评估我们的方法。结果表明,我们提出的贝叶斯非参数方法可深入了解自我车辆的复杂车道变化相互作用,其基于可解释的相互作用模式及其在时间关系中的过渡属性,具有多个周围的交通参与者。我们提出的方法阐明了有效地分析其他类型的多代理相互作用,例如车辆 - 佩特式相互作用。通过https://youtu.be/z_vf9uhtdam查看演示。

Interpretation of common-yet-challenging interaction scenarios can benefit well-founded decisions for autonomous vehicles. Previous research achieved this using their prior knowledge of specific scenarios with predefined models, limiting their adaptive capabilities. This paper describes a Bayesian nonparametric approach that leverages continuous (i.e., Gaussian processes) and discrete (i.e., Dirichlet processes) stochastic processes to reveal underlying interaction patterns of the ego vehicle with other nearby vehicles. Our model relaxes dependency on the number of surrounding vehicles by developing an acceleration-sensitive velocity field based on Gaussian processes. The experiment results demonstrate that the velocity field can represent the spatial interactions between the ego vehicle and its surroundings. Then, a discrete Bayesian nonparametric model, integrating Dirichlet processes and hidden Markov models, is developed to learn the interaction patterns over the temporal space by segmenting and clustering the sequential interaction data into interpretable granular patterns automatically. We then evaluate our approach in the highway lane-change scenarios using the highD dataset collected from real-world settings. Results demonstrate that our proposed Bayesian nonparametric approach provides an insight into the complicated lane-change interactions of the ego vehicle with multiple surrounding traffic participants based on the interpretable interaction patterns and their transition properties in temporal relationships. Our proposed approach sheds light on efficiently analyzing other kinds of multi-agent interactions, such as vehicle-pedestrian interactions. View the demos via https://youtu.be/z_vf9UHtdAM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源