论文标题

融合基于物理和深度学习的预后模型

Fusing Physics-based and Deep Learning Models for Prognostics

论文作者

Chao, Manuel Arias, Kulkarni, Chetan, Goebel, Kai, Fink, Olga

论文摘要

基于物理学的和数据驱动的模型用于剩余的寿命(RUL)预测通常面临两个主要挑战,这些挑战将其适用于复杂的现实世界域的适用性:(1)基于物理的模型的不完整以及(2)培训数据集对数据驱动模型的培训数据集的有限代表性。结合了这两个方向的优势,同时克服了它们的某些局限性,我们提出了一个新型的混合框架,将基于物理的性能模型的信息与深度学习算法融合信息,以实现真实情况下的复杂安全性系统的预后。在提出的框架中,我们使用基于物理的性能模型来推断与系统组件健康解决校准问题有关的不可观察的模型参数。这些参数随后与传感器读数结合在一起,并用作深度神经网络的输入,以生成具有物理功能的数据驱动的预后模型。对混合动力框架的性能进行了评估,该案例研究包括在实际飞行条件下从九台涡轮增压发动机组成的机队进行运营的退化轨迹。实验结果表明,混合框架通过将预测范围扩展到近127%来优于数据驱动的方法。此外,与纯粹的数据驱动方法相比,它需要更少的培训数据,并且对数据集的有限代表性敏感。

Physics-based and data-driven models for remaining useful lifetime (RUL) prediction typically suffer from two major challenges that limit their applicability to complex real-world domains: (1) incompleteness of physics-based models and (2) limited representativeness of the training dataset for data-driven models. Combining the advantages of these two directions while overcoming some of their limitations, we propose a novel hybrid framework for fusing the information from physics-based performance models with deep learning algorithms for prognostics of complex safety-critical systems under real-world scenarios. In the proposed framework, we use physics-based performance models to infer unobservable model parameters related to a system's components health solving a calibration problem. These parameters are subsequently combined with sensor readings and used as input to a deep neural network to generate a data-driven prognostics model with physics-augmented features. The performance of the hybrid framework is evaluated on an extensive case study comprising run-to-failure degradation trajectories from a fleet of nine turbofan engines under real flight conditions. The experimental results show that the hybrid framework outperforms purely data-driven approaches by extending the prediction horizon by nearly 127\%. Furthermore, it requires less training data and is less sensitive to the limited representativeness of the dataset compared to purely data-driven approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源