论文标题
关于稳定的鲍德温 - 洛马克斯模型的弱解决方案的存在和概括
On the existence of weak solutions for the steady Baldwin-Lomax model and generalizations
论文作者
论文摘要
在本文中,我们考虑了稳定的Baldwin-Lomax模型,该模型是一种旋转模型,旨在描述统计平衡处的湍流。 Baldwin-Lomax模型是专门设计的,目的是解决在有限域中发生的湍流运动的问题,并在固体边界处具有差异的边界条件。该模型的主要特征是在边界处的操作员的变性和速度/涡度变量中的公式。操作员的主要部分是非线性的,并且由于存在(作为系数)距离边界距离的力量(系数),因此它是退化的:这一事实使存在理论自然设置在适当的加权sobolev空间的框架中。
In this paper we consider the steady Baldwin-Lomax model, which is a rotational model proposed to describe turbulent flows at statistical equilibrium. The Baldwin-Lomax model is specifically designed to address the problem of a turbulent motion taking place in a bounded domain, with Dirichlet boundary conditions at solid boundaries. The main features of this model are the degeneracy of the operator at the boundary and a formulation in velocity/vorticity variables. The principal part of the operator is non-linear and it is degenerate, due to the presence (as a coefficient) of a power of the distance from the boundary: This fact makes the existence theory naturally set in the framework of appropriate weighted-Sobolev spaces.