论文标题

$ L(\ Mathbb {z}^2 \ rtimes sl_2(\ Mathbb {z}))$ l(\ mathbb {z}^2 \ rtimes sl_2)中的最大haagerup subalgebras $

Maximal Haagerup subalgebras in $L(\mathbb{Z}^2\rtimes SL_2(\mathbb{Z}))$

论文作者

Jiang, Yongle

论文摘要

我们证明$ l(sl_2(\ textbf {k}))$是$ l(\ textbf {k}^2 \ rtimes sl_2(\ textbf {k})$的最大haagerup von neumann subalgebra。然后,我们展示如何修改证明以处理$ \ textbf {k} = \ mathbb {z} $。证明的关键步骤是对$ l(sl_2(\ textbf {k}))之间的所有中间von neumann subergebras的完整说明algebraic操作$ sl_2(\ textbf {k})\ curvearrowright \ wideHat {\ textbf {k}^2} $,通过改进关系$ ϕ \ sim ϕ'$,其中$ ϕ $,其中$ ϕ $,$ ϕ $,$ ϕ y):= ϕ(-x,-y)$ for hast $(x,y)\ in \ textbf {k}^2 $。作为副产品,我们显示$ l(psl_2(\ mathbb {q}))$是$ l^{\ infty}(y)\ rtimes psl_2(\ rtimes psl_2(\ mathbb {q}})中的最大von neumann subalgebra。特别是,$ psl_2(\ mathbb {q})\ curvearrowrowright y $是主要动作,即它不承认非平凡的商动作。

We prove that $L(SL_2(\textbf{k}))$ is a maximal Haagerup von Neumann subalgebra in $L(\textbf{k}^2\rtimes SL_2(\textbf{k}))$ for $\textbf{k}=\mathbb{Q}$. Then we show how to modify the proof to handle $\textbf{k}=\mathbb{Z}$. The key step for the proof is a complete description of all intermediate von Neumann subalgebras between $L(SL_2(\textbf{k}))$ and $L^{\infty}(Y)\rtimes SL_2(\textbf{k})$, where $SL_2(\textbf{k})\curvearrowright Y$ denotes the quotient of the algebraic action $SL_2(\textbf{k})\curvearrowright \widehat{\textbf{k}^2}$ by modding out the relation $ϕ\sim ϕ'$, where $ϕ$, $ϕ'\in \widehat{\textbf{k}^2}$ and $ϕ'(x, y):=ϕ(-x, -y)$ for all $(x, y)\in \textbf{k}^2$. As a by-product, we show $L(PSL_2(\mathbb{Q}))$ is a maximal von Neumann subalgebra in $L^{\infty}(Y)\rtimes PSL_2(\mathbb{Q})$; in particular, $PSL_2(\mathbb{Q})\curvearrowright Y$ is a prime action, i.e. it admits no non-trivial quotient actions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源