论文标题

使用生成对抗变压器的样式示例引导的文本生成

Style Example-Guided Text Generation using Generative Adversarial Transformers

论文作者

Zeng, Kuo-Hao, Shoeybi, Mohammad, Liu, Ming-Yu

论文摘要

我们介绍了一个语言生成模型框架,用于基于上下文句子和样式参考示例生成样式的段落。该框架由样式编码器和文本解码器组成。样式编码器从参考示例中提取样式代码,并且文本解码器基于样式代码和上下文生成文本。我们提出了一个新颖的目标功能来训练我们的框架。我们还研究了不同的网络设计选择。我们进行了广泛的实验验证,与强基础相比,我们使用具有多种文本样式的新收集的数据集验证提出的框架的有效性。代码和数据集将在发布后发布。

We introduce a language generative model framework for generating a styled paragraph based on a context sentence and a style reference example. The framework consists of a style encoder and a texts decoder. The style encoder extracts a style code from the reference example, and the text decoder generates texts based on the style code and the context. We propose a novel objective function to train our framework. We also investigate different network design choices. We conduct extensive experimental validation with comparison to strong baselines to validate the effectiveness of the proposed framework using a newly collected dataset with diverse text styles. Both code and dataset will be released upon publication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源