论文标题

双眼立体图像的超敏感纳米扁平色素

Ultra-sensitive nanometric flat pigment for binocular stereoscopic image

论文作者

Hu, Dejiao, Li, Hao, Zhu, Yupeng, Lei, Yuqiu, Zheng, Jiajin, Cao, Yaoyu, Guan, Bai-Ou, Bi, Lei, Li, Xiangping

论文摘要

具有诱导层依赖性的电子和光学性能的二维(2D)过渡金属二核苷(TMD)已成为集成扁平光电 - 电动设备的新范式。然而,与波长相比,在这种原子厚的层中,具有苛刻形状和厚度的TMD层的确定性挑战仍然存在,并且在这种原子厚的层中进行了光场操作。在这里,我们根据具有纳米精度的激光去角质MOS2层,在完全可见的范围内以完全可见的范围进行超敏感的光场操作。非平凡的界面相移是由于在整个可见带中每个MOS2层高达12.8 nm的超敏感谐振操纵的MOS2层的独特色散,这使得超敏感的谐振操纵高达12.8 nm,这是其比对方大的五倍以上。 Interlayer van der waals相互作用赋予了一种激光去角质方法,用于按需图案MOS2具有原子厚度精度和亚波长度大小,并以简单和光刻的方式进行。因此,可以实现纳米纯色印花和进一步的双眼立体视图,可通过多角度衍射图像实现。我们的结果证明了实用性解锁了全部潜力,并为新兴2D平面光学器件的广泛应用铺平了道路。

Two-dimensional (2D) transition metal dichalcogenides (TMDs) with tantalizing layer-dependent electronic and optical properties have emerged as a new paradigm for integrated flat opto-electronic devices. However, daunting challenges remain in deterministic fabrication of TMD layers with demanded shapes and thicknesses as well as light field manipulation in such atomic-thick layers with vanishingly small thicknesses compared to the wavelength. Here, we demonstrate ultra-sensitive light field manipulation in full visible ranges based on laser exfoliating MoS2 layers with nanometric precisions. The nontrivial interfacial phase shifts stemming from the unique dispersion of MoS2 layers integrated on the metallic substrate empower an ultra-sensitive resonance manipulation up to 12.8 nm per MoS2 layer across the entire visible bands, which is more than five times larger than their counterparts. The interlayer van der Waals interactions endow a laser exfoliation method for on-demand patterning MoS2 with atomic thickness precisions and subwavelength feature sizes in a facile and lithography-free fashion. With this, nanometric flat color prints and further binocular stereoscopic views by multi-perspective diffractive images can be realized. Our results with demonstrated practicality unlock full potentials and pave the way for widespread applications of emerging 2D flat optics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源