论文标题

通过强盗人类反馈对社会意识的机器人计划

Socially-Aware Robot Planning via Bandit Human Feedback

论文作者

Luo, Xusheng, Zhang, Yan, Zavlanos, Michael M.

论文摘要

在本文中,我们考虑了针对人类填充的环境中运行的机器人设计无碰撞,动态可行且具有社会意识的轨迹的问题。如果轨迹不以任何引起不适的方式干扰人类,我们将轨迹定义为社会意识。在本文中,不适是广泛定义的,根据特定的个人,这可能是由于机器人离人太近或干扰人类的视力或任务而导致的。此外,我们假设人类反馈是一种强盗反馈,表明机器人轨迹的投诉或没有投诉,而机器人轨迹会干扰人类,并且没有揭示有关人类位置或投诉的任何上下文信息。最后,我们假设人类可以在无障碍空间中移动,结果,人类效用可以改变。我们将这个计划问题提出来为在线优化问题,该问题最大程度地降低了随时间变化的机器人轨迹的社会价值,这是由人类投诉总数的总数所定义的。由于人类效用是未知的,我们采用零秩序或无衍生的优化方法来解决此问题,我们将其与现成的运动计划者结合使用,以满足所得轨迹的动态可行性和无碰撞规格。据我们所知,这是一个针对社会意识的机器人计划的新框架,不仅限于避免与人类发生碰撞,而是专注于仅使用强盗人类反馈来提高机器人轨迹的社会价值。

In this paper, we consider the problem of designing collision-free, dynamically feasible, and socially-aware trajectories for robots operating in environments populated by humans. We define trajectories to be social-aware if they do not interfere with humans in any way that causes discomfort. In this paper, discomfort is defined broadly and, depending on specific individuals, it can result from the robot being too close to a human or from interfering with human sight or tasks. Moreover, we assume that human feedback is a bandit feedback indicating a complaint or no complaint on the part of the robot trajectory that interferes with the humans, and it does not reveal any contextual information about the locations of the humans or the reason for a complaint. Finally, we assume that humans can move in the obstacle-free space and, as a result, human utility can change. We formulate this planning problem as an online optimization problem that minimizes the social value of the time-varying robot trajectory, defined by the total number of incurred human complaints. As the human utility is unknown, we employ zeroth order, or derivative-free, optimization methods to solve this problem, which we combine with off-the-shelf motion planners to satisfy the dynamic feasibility and collision-free specifications of the resulting trajectories. To the best of our knowledge, this is a new framework for socially-aware robot planning that is not restricted to avoiding collisions with humans but, instead, focuses on increasing the social value of the robot trajectories using only bandit human feedback.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源