论文标题

全球上下文感知的渐进汇总网络,用于显着对象检测

Global Context-Aware Progressive Aggregation Network for Salient Object Detection

论文作者

Chen, Zuyao, Xu, Qianqian, Cong, Runmin, Huang, Qingming

论文摘要

深度卷积神经网络在显着对象检测中取得了竞争性能,在该检测中,如何学习有效和全面的功能起着至关重要的作用。以前的大多数作品主要采用了多个级别的集成,但却忽略了不同特征之间的差距。此外,在自上而下的路径上经过时,还存在着一个高级特征的稀释过程。为了解决这些问题,我们提出了一个名为GCPANET的新型网络,以通过一些渐进的上下文感知特征相互交织的聚合(FIA)模块有效地整合低级外观功能,高级语义特征和全球上下文特征,并以监督的方式产生显着性图。此外,通过利用空间和频道的关注,使用头部注意(HA)模块来减少信息冗余,并增强顶层特征,并利用自我改进(SR)模块进一步完善并增强输入功能。此外,我们设计了全球上下文流(GCF)模块,以在不同阶段生成全球上下文信息,该模块旨在了解不同的显着区域之间的关系并减轻高级特征的稀释效果。六个基准数据集的实验结果表明,所提出的方法在定量和定性上都优于最先进的方法。

Deep convolutional neural networks have achieved competitive performance in salient object detection, in which how to learn effective and comprehensive features plays a critical role. Most of the previous works mainly adopted multiple level feature integration yet ignored the gap between different features. Besides, there also exists a dilution process of high-level features as they passed on the top-down pathway. To remedy these issues, we propose a novel network named GCPANet to effectively integrate low-level appearance features, high-level semantic features, and global context features through some progressive context-aware Feature Interweaved Aggregation (FIA) modules and generate the saliency map in a supervised way. Moreover, a Head Attention (HA) module is used to reduce information redundancy and enhance the top layers features by leveraging the spatial and channel-wise attention, and the Self Refinement (SR) module is utilized to further refine and heighten the input features. Furthermore, we design the Global Context Flow (GCF) module to generate the global context information at different stages, which aims to learn the relationship among different salient regions and alleviate the dilution effect of high-level features. Experimental results on six benchmark datasets demonstrate that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源