论文标题
智能反射表面辅助多用户的DMA:渠道估计和训练设计
Intelligent Reflecting Surface Assisted Multi-User OFDMA: Channel Estimation and Training Design
论文作者
论文摘要
为了实现智能反射表面(IRS)的完整被动边界成型的收益,准确的通道状态信息(CSI)是必不可少的,但实际上是具有挑战性的,因为要估算的通道参数过多,这会随着IRS的数量而增加,而IR的数量以及反映IRS服务的用户的数量。为了应对这一挑战,我们在本文中提出了使用正交频分部多访问(OFDMA)的IRS辅助多用户宽带通信系统中不同通道设置的两个有效的通道估计方案。第一个通道估计方案在接入点(AP)同时估算所有用户的CSI,适用于任意频率选择性褪色通道。相比之下,第二个通道估计方案利用了所有用户共享相同(常见的)IRS-AP渠道的关键属性,以提高培训效率和支持更多用户,并针对典型的情况,具有典型的情况(LOS)优势用户-IRS频道。对于提出的两个频道估计方案,我们进一步优化了它们相应的培训设计(包括所有用户和IRS时变时间反射模式的试验性训练设计),以最大程度地减少通道估计误差。此外,我们得出并比较了最低培训开销的基本限制以及这两个方案的最大支持用户数量。仿真结果验证了所提出的通道估计方案和训练设计的有效性,并显示了它们对各种基准方案的显着性能提高。
To achieve the full passive beamforming gains of intelligent reflecting surface (IRS), accurate channel state information (CSI) is indispensable but practically challenging to acquire, due to the excessive amount of channel parameters to be estimated which increases with the number of IRS reflecting elements as well as that of IRS-served users. To tackle this challenge, we propose in this paper two efficient channel estimation schemes for different channel setups in an IRS-assisted multi-user broadband communication system employing the orthogonal frequency division multiple access (OFDMA). The first channel estimation scheme, which estimates the CSI of all users in parallel simultaneously at the access point (AP), is applicable for arbitrary frequency-selective fading channels. In contrast, the second channel estimation scheme, which exploits a key property that all users share the same (common) IRS-AP channel to enhance the training efficiency and support more users, is proposed for the typical scenario with line-of-sight (LoS) dominant user-IRS channels. For the two proposed channel estimation schemes, we further optimize their corresponding training designs (including pilot tone allocations for all users and IRS time-varying reflection pattern) to minimize the channel estimation error. Moreover, we derive and compare the fundamental limits on the minimum training overhead and the maximum number of supportable users of these two schemes. Simulation results verify the effectiveness of the proposed channel estimation schemes and training designs, and show their significant performance improvement over various benchmark schemes.