论文标题

从易于到复杂的学习:神经对话的自适应多课程学习

Learning from Easy to Complex: Adaptive Multi-curricula Learning for Neural Dialogue Generation

论文作者

Cai, Hengyi, Chen, Hongshen, Zhang, Cheng, Song, Yonghao, Zhao, Xiaofang, Li, Yangxi, Duan, Dongsheng, Yin, Dawei

论文摘要

当前的最新神经对话系统主要是数据驱动的,并且接受了人类生成的反应的培训。但是,由于人类对话的主观性和开放性质,培训对话的复杂性差异很大。查询响应对的噪声和不平衡的复杂性阻碍了神经对话生成模型的学习效率和影响。更重要的是,到目前为止,还没有统一的对话复杂性测量值,对话复杂性体现了属性的多个方面 - 特殊性,重复性,相关性,相关性等。受到人类学习交流行为的启发,儿童在这些方面学习与对话的简单对话中的简易对话学习对复杂的对话,并在本文中进行动态调整,我们在本文中进行了五次对话,以对对话进行多次分析,以衡量对话的多次对话。然后,我们提出一个自适应的多课程学习框架,以安排有组织的课程委员会。该框架是在强化学习范式上建立的,该范式会根据神经对话生成模型的学习状态在不断发展的学习过程中自动选择不同的课程。在五个最先进的模型上进行的广泛实验证明了其有关13个自动评估指标和人类判断的学习效率和有效性。

Current state-of-the-art neural dialogue systems are mainly data-driven and are trained on human-generated responses. However, due to the subjectivity and open-ended nature of human conversations, the complexity of training dialogues varies greatly. The noise and uneven complexity of query-response pairs impede the learning efficiency and effects of the neural dialogue generation models. What is more, so far, there are no unified dialogue complexity measurements, and the dialogue complexity embodies multiple aspects of attributes---specificity, repetitiveness, relevance, etc. Inspired by human behaviors of learning to converse, where children learn from easy dialogues to complex ones and dynamically adjust their learning progress, in this paper, we first analyze five dialogue attributes to measure the dialogue complexity in multiple perspectives on three publicly available corpora. Then, we propose an adaptive multi-curricula learning framework to schedule a committee of the organized curricula. The framework is established upon the reinforcement learning paradigm, which automatically chooses different curricula at the evolving learning process according to the learning status of the neural dialogue generation model. Extensive experiments conducted on five state-of-the-art models demonstrate its learning efficiency and effectiveness with respect to 13 automatic evaluation metrics and human judgments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源