论文标题
在拓扑超导体中观察到的分数小公园效应
Fractional Little-Parks effect observed in a topological superconductor
论文作者
论文摘要
在超导体中,库珀对的凝结在$φ_0= hc / 2e $的离散单位中产生了通量量化。 $ 2E $的分母是电子配对的签名,它可以通过多种宏观量子现象(例如Little-Parks效应和Josephson效应)证明,其中临界温度或临界电流在$φ_0$的时期振荡。在这里,我们报告了在拓扑超导体的外延$β$ -bi $ _2 $ _2 $ _2 $ pd中观察到分数小公园效应。除$φ_0$外,还观察到了新颖的小公园振荡周期$2φ_0$,$3φ_0$和$4φ_0$,这意味着有效指控的准粒子是库珀对的一小部分。我们表明,分数小公园效应可能与分数约瑟夫森效应密切相关,这是手性majorana缘状态的关键特征。
In superconductors, the condensation of Cooper pairs gives rise to fluxoid quantization in discrete units of $Φ_0 = hc / 2e$. The denominator of $2e$ is the signature of electron pairing, which is evidenced by a number of macroscopic quantum phenomena, such as the Little-Parks effect and the Josephson effect, where the critical temperature or the critical current oscillates in the period of $Φ_0$. Here we report the observation of fractional Little-Parks effect in mesoscopic rings of epitaxial $β$-Bi$_2$Pd, a topological superconductor. Besides $Φ_0$, novel Little-Parks oscillation periodicities of $2Φ_0$, $3Φ_0$ and $4Φ_0$ are also observed, implying quasiparticles with effective charges being a fraction of a Cooper pair. We show that the fractional Little-Parks effect may be closely related to the fractional Josephson effect, which is a key signature of chiral Majorana edge states.