论文标题
重新思考全卷积网络以分析光致发光晶片图像
Rethinking Fully Convolutional Networks for the Analysis of Photoluminescence Wafer Images
论文作者
论文摘要
发光二极管的制造是一个复杂的半导体制造过程,散布在不同的测量中。在使用的测量值中,光致发光成像具有多个优点,即无损,快速,因此具有成本效益的测量。在LED晶片的光致发光测量图像上,每个像素对应于光启动后LED芯片的亮度,从而揭示了芯片性能信息。但是,基于光致发光图像,基于光致发光图像生成芯片 - 晶状体的芯片 - 晶状体图,出于多种原因证明了具有挑战性:一方面,除了亮度不同的局部斑点外,测得的亮度值因图像到图像而异。另一方面,某些缺陷结构可以假定多种形状,尺寸和亮度梯度,其中显着的亮度值可能对应于有缺陷的LED芯片,测量伪像或非缺陷结构。在这项工作中,我们使用完全卷积的网络重新审视了芯片 - 菲特缺陷图的创建,并表明可以通过掺入密集连接的卷积块和非常有用的空间金字塔池模块来改善多个尺度的对象的问题。我们还通过较小的测量图像数据集分享实施细节和在培训网络中的经验。所提出的体系结构显着提高了高度可变缺陷结构的细分精度,而不是我们以前的版本。
The manufacturing of light-emitting diodes is a complex semiconductor-manufacturing process, interspersed with different measurements. Among the employed measurements, photoluminescence imaging has several advantages, namely being a non-destructive, fast and thus cost-effective measurement. On a photoluminescence measurement image of an LED wafer, every pixel corresponds to an LED chip's brightness after photo-excitation, revealing chip performance information. However, generating a chip-fine defect map of the LED wafer, based on photoluminescence images, proves challenging for multiple reasons: on the one hand, the measured brightness values vary from image to image, in addition to local spots of differing brightness. On the other hand, certain defect structures may assume multiple shapes, sizes and brightness gradients, where salient brightness values may correspond to defective LED chips, measurement artefacts or non-defective structures. In this work, we revisit the creation of chip-fine defect maps using fully convolutional networks and show that the problem of segmenting objects at multiple scales can be improved by the incorporation of densely connected convolutional blocks and atrous spatial pyramid pooling modules. We also share implementation details and our experiences with training networks with small datasets of measurement images. The proposed architecture significantly improves the segmentation accuracy of highly variable defect structures over our previous version.