论文标题

flic:快速生物激光镜图像群集

FLIC: Fast Lidar Image Clustering

论文作者

Hasecke, Frederik, Hahn, Lukas, Kummert, Anton

论文摘要

激光雷达传感器广泛用于各种应用中,从工业用途的科学领域到消费产品的集成。随着越来越多的不同驾驶员援助系统的越来越多,近年来已将其引入汽车系列生产中,被认为是自动驾驶实际实现的重要组成部分。但是,由于每次扫描的可能发光点可能有大量的激光点,因此需要量身定制的算法才能在很短的时间内高精度识别物体(例如行人或车辆)。在这项工作中,我们提出了一种算法方法,用于对激光雷达传感器数据进行实例实例分割。我们展示了我们的方法如何利用欧几里得距离的性质保留三维测量信息,同时又缩小到二维表示以进行快速计算。我们进一步介绍了所谓的“跳过连接”,以使我们的方法强大地抵抗过度分割并在部分遮挡的情况下改善分配。通过对公共数据的详细评估以及与既定方法的比较,我们展示了这些方面如何在单个CPU核心上实现最先进的性能和运行时。

Lidar sensors are widely used in various applications, ranging from scientific fields over industrial use to integration in consumer products. With an ever growing number of different driver assistance systems, they have been introduced to automotive series production in recent years and are considered an important building block for the practical realisation of autonomous driving. However, due to the potentially large amount of Lidar points per scan, tailored algorithms are required to identify objects (e.g. pedestrians or vehicles) with high precision in a very short time. In this work, we propose an algorithmic approach for real-time instance segmentation of Lidar sensor data. We show how our method leverages the properties of the Euclidean distance to retain three-dimensional measurement information, while being narrowed down to a two-dimensional representation for fast computation. We further introduce what we call "skip connections", to make our approach robust against over-segmentation and improve assignment in cases of partial occlusion. Through detailed evaluation on public data and comparison with established methods, we show how these aspects enable state-of-the-art performance and runtime on a single CPU core.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源