论文标题

几何形状引起的三角元结构中局部光子转运的循环

Geometry-induced circulation of local photonic transport in a triangular metastructure

论文作者

Dugar, Palak, Scheibner, Michael, Chien, Chih-Chun

论文摘要

基于几何形状的机制,用于诱导光子循环,这是由由在三角形结合到光子结构的三角形中的量子点组成的元结构来说明的。量子点中光子和激子之间的耦合导致光子阻滞,并限制参与传输的光子数量。在光子的量子主方程描述的稳态中,局部光子电流表现出不同的循环模式,该图案源自多路径几何形状中的波性质。基于几何的机制不需要从光 - 物质相互作用的人造量规场。随着每个位点允许的光子数量增加,显示出不同的循环模式可以发现不同的循环模式的相图。通过使用第三量化的形式主义,我们显示了在非相互作用的情况下没有任何光子阻滞的循环生存。此外,我们证明了局部电流的方向与密度差的脱钩,并提出了局部光子转运的可能应用。

A geometry-based mechanism for inducing circulation of photons is illustrated by a metastructure consisting of quantum dots arranged in a triangle coupled to photonic structures. The coupling between the photons and the excitons in the quantum dots leads to a photon blockade and limits the number of photons participating in the transport. In the steady state described by the quantum master equation of photons, the local photonic currents exhibit distinct circulation patterns, which originate from the wave nature in a multi-path geometry. The geometry-based mechanism does not require an artificial gauge field from light-matter interactions. The phase diagrams showing where different patterns of circulation can be found saturate as the number of photons allowed on each site increases. By using the third-quantization formalism, we show the circulation survives without any photon blockade in the noninteracting case. Moreover, we demonstrate the decoupling of the direction of the local current from the density difference and propose possible applications of the local photonic transport.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源