论文标题
线条排列的最大级别顶点
The Maximum-Level Vertex in an Arrangement of Lines
论文作者
论文摘要
让$ l $是飞机上的$ n $行,不一定是一般位置。我们提出了一种有效的算法,用于查找最大水平的布置$ a(l)$的所有顶点,其中顶点$ v $的级别是$ l $的行数,严格通过$ v $。这个问题在de Berg etal [BCKO08]中的练习〜8.13中提出,似乎比看起来要难得多,因为这个顶点可能不在线的上部信封上。 我们首先假设$ l $的所有线都是不同的,并区分两种情况,具体取决于$ l $的上限是否包含有界边缘。在前一种情况下,我们表明,通过以上任何最大级别顶点$ v_0 $的$ L $的行数仅为$ o(\ log n)$。在后一种情况下,我们建立了一个类似的属性,该属性在删除了上上限的单个顶点的某些线之后所拥有的类似属性。我们介绍在两种情况下以最佳$ O(n \ log n)$时间运行的算法。 然后,我们考虑$ L $的线不一定是不同的情况。此设置更具挑战性,我们拥有的最好的是一种算法,该算法在时间$ o(n^{4/3} \ log^{3} n)$中计算所有最大级别的顶点。 最后,我们考虑了一个相关的组合问题,用于退化布置,其中许多线可能在一个点上相交,但是所有线都不同:我们绑定了这种布置中加权$ k $ - 级别的复杂性,其中顶点的重量是通过顶点的线数。我们表明,在这种情况下的界限为$ O(n^{4/3})$,它匹配了非分类安排的相应绑定,并且我们在分析我们的一种算法的分析中使用了此绑定。
Let $L$ be a set of $n$ lines in the plane, not necessarily in general position. We present an efficient algorithm for finding all the vertices of the arrangement $A(L)$ of maximum level, where the level of a vertex $v$ is the number of lines of $L$ that pass strictly below $v$. The problem, posed in Exercise~8.13 in de Berg etal [BCKO08], appears to be much harder than it seems, as this vertex might not be on the upper envelope of the lines. We first assume that all the lines of $L$ are distinct, and distinguish between two cases, depending on whether or not the upper envelope of $L$ contains a bounded edge. In the former case, we show that the number of lines of $L$ that pass above any maximum level vertex $v_0$ is only $O(\log n)$. In the latter case, we establish a similar property that holds after we remove some of the lines that are incident to the single vertex of the upper envelope. We present algorithms that run, in both cases, in optimal $O(n\log n)$ time. We then consider the case where the lines of $L$ are not necessarily distinct. This setup is more challenging, and the best we have is an algorithm that computes all the maximum-level vertices in time $O(n^{4/3}\log^{3}n)$. Finally, we consider a related combinatorial question for degenerate arrangements, where many lines may intersect in a single point, but all the lines are distinct: We bound the complexity of the weighted $k$-level in such an arrangement, where the weight of a vertex is the number of lines that pass through the vertex. We show that the bound in this case is $O(n^{4/3})$, which matches the corresponding bound for non-degenerate arrangements, and we use this bound in the analysis of one of our algorithms.