论文标题

表征Filippov代表地图和Clarke细分

Characterization of Filippov representable maps and Clarke subdifferentials

论文作者

Bivas, Mira, Daniilidis, Aris, Quincampoix, Marc

论文摘要

普通微分方程$ \ dot {x}(t)= f(x(t)),\; t \ geq 0 $,对于$ f $可测量,不足以保证解决方案的存在。为了解决这个问题,我们可以通过用其filippov正则化$ f_ {f} $替换功能$ f $来放松问题,并考虑在f_ {f}(x(t))$中的微分包含$ \ dot $ \ dot {x}(x}(t)\,该$始终具有解决方案。有趣的是,当可以作为(单值,可测量)函数的Filippov正则化获得设置值$φ$时,这很有趣。在这项工作中,我们给出了此类设置值地图的全面表征,特此称为Filippov代表。这种特征还提供了对Lipschitz功能的Clarke细分的那些地图的优雅描述。

The ordinary differential equation $\dot{x}(t)=f(x(t)), \; t \geq 0 $, for $f$ measurable, is not sufficiently regular to guarantee existence of solutions. To remedy this we may relax the problem by replacing the function $f$ with its Filippov regularization $F_{f}$ and consider the differential inclusion $\dot{x}(t)\in F_{f}(x(t))$ which always has a solution. It is interesting to know, inversely, when a set-valued map $Φ$ can be obtained as the Filippov regularization of a (single-valued, measurable) function. In this work we give a full characterization of such set-valued maps, hereby called Filippov representable. This characterization also yields an elegant description of those maps that are Clarke subdifferentials of a Lipschitz function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源