论文标题

合奏中的随机协方差缩小方法转化卡尔曼过滤

A Stochastic Covariance Shrinkage Approach in Ensemble Transform Kalman Filtering

论文作者

Popov, Andrey A, Sandu, Adrian, Nino-Ruiz, Elias D., Evensen, Geir

论文摘要

Ensemble Kalman过滤器(ENKF)采用蒙特卡洛方法来表示协方差信息,并受到操作设置中的采样错误的影响,在操作设置中,模型实现的数量远小于模型状态维度。为了减轻这些错误的影响,enkf依赖于特定于模型的启发式方法,例如协方差定位,它利用了模型变量之间相关性的空间位置。这项工作提出了一种减轻采样误差的方法,该方法利用模型的本地平均动力学,用动力学系统的气候协方差描述。我们将这种协方差用作协方差缩小方法中的目标矩阵,并开发一种随机协方差缩小方法,其中吸引合成集合成员以丰富集合子空间和集成转换。我们还提供了一种可以与最新的Letkf方法相似的本地化方法的方式,并且对于某个模型设置,我们的方法可以极大地表现它。

The Ensemble Kalman Filters (EnKF) employ a Monte-Carlo approach to represent covariance information, and are affected by sampling errors in operational settings where the number of model realizations is much smaller than the model state dimension. To alleviate the effects of these errors EnKF relies on model-specific heuristics such as covariance localization, which takes advantage of the spatial locality of correlations among the model variables. This work proposes an approach to alleviate sampling errors that utilizes a locally averaged-in-time dynamics of the model, described in terms of a climatological covariance of the dynamical system. We use this covariance as the target matrix in covariance shrinkage methods, and develop a stochastic covariance shrinkage approach where synthetic ensemble members are drawn to enrich both the ensemble subspace and the ensemble transformation. We additionally provide for a way in which this methodology can be localized similar to the state-of-the-art LETKF method, and that for a certain model setup, our methodology significantly outperforms it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源