论文标题

对自主驾驶数据的知识图嵌入评估:经验和实践

An Evaluation of Knowledge Graph Embeddings for Autonomous Driving Data: Experience and Practice

论文作者

Wickramarachchi, Ruwan, Henson, Cory, Sheth, Amit

论文摘要

自主驾驶(AD)行业正在探索使用知识图(kgs)来管理从车辆传感器生成的大量异质数据。各种类型的配备传感器包括视频,LiDAR和雷达。场景理解是广告中的一个重要主题,需要考虑场景的各个方面,例如检测到的对象,事件,时间和位置。最新的知识图嵌入(KGE)的工作(一种促进神经符号融合的方法)已证明可以改善机器学习模型的预测性能。随着预期神经符号融合通过kges可以提高场景的理解,这项研究探讨了对自主驾驶数据的产生和评估。我们还提出了对千克信息细节水平与其衍生嵌入质量之间的关系的研究。通过系统地评估沿着四个维度(即质量指标,KG信息详细信息,算法和数据集)的基数 - 我们表明(1)(1)KGS中较高的信息细节较高级别,导致较高质量的嵌入,(2)基于语义过渡性的Transe Algorth和Some noticer(3),(2)更好地捕获了类型和关系,以使某些指标和(3)notrics(3),(3)本质上评估该域中的毛金属。此外,我们还提出了对AD域中两个用例的有用性的(早期)研究。

The autonomous driving (AD) industry is exploring the use of knowledge graphs (KGs) to manage the vast amount of heterogeneous data generated from vehicular sensors. The various types of equipped sensors include video, LIDAR and RADAR. Scene understanding is an important topic in AD which requires consideration of various aspects of a scene, such as detected objects, events, time and location. Recent work on knowledge graph embeddings (KGEs) - an approach that facilitates neuro-symbolic fusion - has shown to improve the predictive performance of machine learning models. With the expectation that neuro-symbolic fusion through KGEs will improve scene understanding, this research explores the generation and evaluation of KGEs for autonomous driving data. We also present an investigation of the relationship between the level of informational detail in a KG and the quality of its derivative embeddings. By systematically evaluating KGEs along four dimensions -- i.e. quality metrics, KG informational detail, algorithms, and datasets -- we show that (1) higher levels of informational detail in KGs lead to higher quality embeddings, (2) type and relation semantics are better captured by the semantic transitional distance-based TransE algorithm, and (3) some metrics, such as coherence measure, may not be suitable for intrinsically evaluating KGEs in this domain. Additionally, we also present an (early) investigation of the usefulness of KGEs for two use-cases in the AD domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源