论文标题

通过无监督域的适应性校准了协变量的校准预测

Calibrated Prediction with Covariate Shift via Unsupervised Domain Adaptation

论文作者

Park, Sangdon, Bastani, Osbert, Weimer, James, Lee, Insup

论文摘要

可靠的不确定性估计是帮助自主代理或人类决策者理解和利用预测模型的重要工具。但是,现有的估计不确定性的方法在很大程度上忽略了协变量转移的可能性,即现实世界中数据分布可能与培训分布有所不同。结果,现有算法可以高估确定性,可能会对预测模型产生错误的信心感。我们提出了一种用于校准预测的算法,该算法说明了协变量转移的可能性,鉴于训练分布中标记了示例以及来自现实世界分布的未标记示例。我们的算法使用重要的加权来纠正从训练到现实世界分布的转变。但是,重要的加权依赖于培训和现实世界的分布足够接近。我们还基于域适应的想法,还学习了一个功能图,该功能图试图均衡这两个分布。在经验评估中,我们表明,当有协变量变化时,我们提出的方法的表现优于现有的校准预测方法。

Reliable uncertainty estimates are an important tool for helping autonomous agents or human decision makers understand and leverage predictive models. However, existing approaches to estimating uncertainty largely ignore the possibility of covariate shift--i.e., where the real-world data distribution may differ from the training distribution. As a consequence, existing algorithms can overestimate certainty, possibly yielding a false sense of confidence in the predictive model. We propose an algorithm for calibrating predictions that accounts for the possibility of covariate shift, given labeled examples from the training distribution and unlabeled examples from the real-world distribution. Our algorithm uses importance weighting to correct for the shift from the training to the real-world distribution. However, importance weighting relies on the training and real-world distributions to be sufficiently close. Building on ideas from domain adaptation, we additionally learn a feature map that tries to equalize these two distributions. In an empirical evaluation, we show that our proposed approach outperforms existing approaches to calibrated prediction when there is covariate shift.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源