论文标题
有限域的条纹:为什么曲折的不稳定性只是部分故事
Stripes on finite domains: Why the zigzag instability is only a partial story
论文作者
论文摘要
固定周期性模式在自然科学中是广泛的,从纳米级电化学和两亲性系统到中尺度流体,化学和生物学媒体以及宏观规模的植被和云模式。它们的形成通常是由于条纹均匀状态的主要对称性破坏,然后通常是形成曲折和迷宫模式的次要不稳定性。在无限域的理想化条件下,对这些二次不稳定性进行了很好的研究,但是,在有限域中,情况更加微妙,因为不稳定的模式也取决于边界条件。使用两个原型模型,即Swift-Hohenberg方程和强制复杂的Ginzburg-Landau方程,我们考虑了有界域,而没有通量边界条件横向条纹,并揭示了经典Zigzag和Eckhaus线之间的独特的混合模式不稳定。这解释了条纹在轻度锯齿形的不稳定方案中的稳定性,在越过混合模式线后,大部分域中的锯齿形条纹的演变以及边界附近的缺陷形成。结果对于较大的时间尺度分离的问题尤其重要,例如有机光伏中的散装 - 直系结构变形和半干旱地区的植被,在这种情况下,早期的时间瞬变可能起重要作用。
Stationary periodic patterns are widespread in natural sciences, ranging from nano-scale electrochemical and amphiphilic systems to mesoscale fluid, chemical and biological media and to macro-scale vegetation and cloud patterns. Their formation is usually due to a primary symmetry breaking of a uniform state to stripes, often followed by secondary instabilities to form zigzag and labyrinthine patterns. These secondary instabilities are well studied under idealized conditions of an infinite domain, however, on finite domains, the situation is more subtle since the unstable modes depend also on boundary conditions. Using two prototypical models, the Swift-Hohenberg equation and the forced complex Ginzburg-Landau equation, we consider bounded domains with no flux boundary conditions transversal to the stripes, and reveal a distinct mixed-mode instability that lies in between the classical zigzag and the Eckhaus lines. This explains the stability of stripes in the mildly zigzag unstable regime, and, after crossing the mixed-mode line, the evolution of zigzag stripes in the bulk of the domain and the formation of defects near the boundaries. The results are of particular importance for problems with large time scale separation, such as bulk-heterojunction deformations in organic photovoltaic and vegetation in semi-arid regions, where early temporal transients may play an important role.