论文标题

通过Fréchet的平均值来区分

Differentiating through the Fréchet Mean

论文作者

Lou, Aaron, Katsman, Isay, Jiang, Qingxuan, Belongie, Serge, Lim, Ser-Nam, De Sa, Christopher

论文摘要

深度表示学习的最新进展扩展了经典的深度学习操作,以更好地捕获歧管的几何形状。一种可能的扩展是弗雷奇的平均值,欧几里得平均值的概括。但是,很难应用,因为它缺少具有易于计算的衍生物的封闭形式。在本文中,我们展示了如何通过弗雷奇(Fréchet)的含义来区分任意riemannian歧管的含义。然后,以双曲线空间为重点,我们得出了明确的梯度表达式,并提供快速,准确,无参数的Fréchet平均求解器。这将Fréchet平均值完全集成到双曲线神经网络管道中。为了证明这种整合,我们提出了两个案例研究。首先,我们将Fréchet平均值应用于现有的双曲线图卷积网络,取代其预计的聚合,以在高血压高的数据集上获得最新的结果。其次,为了证明FréchetMeans概括欧几里得神经网络操作的能力,我们开发了一种双曲批归一化方法,该方法与在欧几里得环境中观察到的相似。

Recent advances in deep representation learning on Riemannian manifolds extend classical deep learning operations to better capture the geometry of the manifold. One possible extension is the Fréchet mean, the generalization of the Euclidean mean; however, it has been difficult to apply because it lacks a closed form with an easily computable derivative. In this paper, we show how to differentiate through the Fréchet mean for arbitrary Riemannian manifolds. Then, focusing on hyperbolic space, we derive explicit gradient expressions and a fast, accurate, and hyperparameter-free Fréchet mean solver. This fully integrates the Fréchet mean into the hyperbolic neural network pipeline. To demonstrate this integration, we present two case studies. First, we apply our Fréchet mean to the existing Hyperbolic Graph Convolutional Network, replacing its projected aggregation to obtain state-of-the-art results on datasets with high hyperbolicity. Second, to demonstrate the Fréchet mean's capacity to generalize Euclidean neural network operations, we develop a hyperbolic batch normalization method that gives an improvement parallel to the one observed in the Euclidean setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源