论文标题
贝叶斯进行肿瘤宠物分割的组织分数估计方法
A Bayesian approach to tissue-fraction estimation for oncological PET segmentation
论文作者
论文摘要
肿瘤PET中的肿瘤分割具有挑战性,这是一个主要原因是由于系统分辨率低和有限的体素大小而产生的部分体积效应。后者会导致组织效果,即体素包含组织类别的混合物。常规的分割方法通常是为了将图像中的每个体素分配为属于某个组织类别的分配。因此,这些方法在建模组织分数效应时固有地受到限制。为了应对部分体积效应的挑战,尤其是组织分数效应,我们提出了一种贝叶斯方法来进行肿瘤宠物分割的组织分数估计。具体而言,这种贝叶斯方法估计肿瘤在图像的每个体素内占据的分数体积的后均值。在使用基于深度学习的技术实施的提出的方法首先使用具有已知地面真理的临床现实二维模拟研究评估,这是在分割肺癌患者PET图像中原发性肿瘤的背景下进行了评估。评估研究表明,该方法准确地估算了肿瘤分数区域,并且明显优于广泛使用的常规PET分割方法,包括基于U-NET的方法,用于分割肿瘤的任务。此外,该方法对部分体积效应相对不敏感,并为不同的临床扫描构型产生可靠的肿瘤分割。然后,使用ACRIN 6668/RTOG 0235多中心临床试验的IIB/III非小细胞肺癌患者的临床图像进行评估。在这里,结果表明,所提出的方法显着超过了所有其他考虑的方法,并在骰子相似性系数(DSC)的患者图像上产生了准确的肿瘤分割,为0.82(95%CI:[0.78,0.86])。
Tumor segmentation in oncological PET is challenging, a major reason being the partial-volume effects that arise due to low system resolution and finite voxel size. The latter results in tissue-fraction effects, i.e. voxels contain a mixture of tissue classes. Conventional segmentation methods are typically designed to assign each voxel in the image as belonging to a certain tissue class. Thus, these methods are inherently limited in modeling tissue-fraction effects. To address the challenge of accounting for partial-volume effects, and in particular, tissue-fraction effects, we propose a Bayesian approach to tissue-fraction estimation for oncological PET segmentation. Specifically, this Bayesian approach estimates the posterior mean of fractional volume that the tumor occupies within each voxel of the image. The proposed method, implemented using a deep-learning-based technique, was first evaluated using clinically realistic 2-D simulation studies with known ground truth, in the context of segmenting the primary tumor in PET images of patients with lung cancer. The evaluation studies demonstrated that the method accurately estimated the tumor-fraction areas and significantly outperformed widely used conventional PET segmentation methods, including a U-net-based method, on the task of segmenting the tumor. In addition, the proposed method was relatively insensitive to partial-volume effects and yielded reliable tumor segmentation for different clinical-scanner configurations. The method was then evaluated using clinical images of patients with stage IIB/III non-small cell lung cancer from ACRIN 6668/RTOG 0235 multi-center clinical trial. Here, the results showed that the proposed method significantly outperformed all other considered methods and yielded accurate tumor segmentation on patient images with Dice similarity coefficient (DSC) of 0.82 (95 % CI: [0.78, 0.86]).