论文标题
决定性品种的最小
The Minimality of Determinantal Varieties
论文作者
论文摘要
确定品种$σ_{pq} $被定义为所有$ p \ times q $真实矩阵的集合,其等级严格小于$ q $。事实证明,$σ_{pq} $是$ \ Mathbb r^{pq} $中的最小锥体,其所有阶层都是常规的最小submanifolds。
The determinantal variety $Σ_{pq}$ is defined to be the set of all $p\times q$ real matrices with $p\geq q$ whose ranks are strictly smaller than $q$. It is proved that $Σ_{pq}$ is a minimal cone in $\mathbb R^{pq}$ and all its strata are regular minimal submanifolds.