论文标题
图像动画的一阶运动模型
First Order Motion Model for Image Animation
论文作者
论文摘要
图像动画包括生成视频序列,以便根据驱动视频的运动对源图像中的对象进行动画。我们的框架无需使用有关特定对象进行动画的任何注释或事先信息解决此问题。一旦在一组描述同一类别的对象(例如面孔,人体)的视频中进行培训,我们的方法可以应用于此类的任何对象。为了实现这一目标,我们使用自我监督的配方将外观和运动信息分解。为了支持复杂的动作,我们使用由一组学习的关键点组成的表示以及它们的本地仿射变换。在目标运动过程中产生的发电机网络模型闭合,并结合了从源图像中提取的外观和从驾驶视频中得出的运动。我们的框架在不同的基准和各种对象类别上得分最高。我们的源代码公开可用。
Image animation consists of generating a video sequence so that an object in a source image is animated according to the motion of a driving video. Our framework addresses this problem without using any annotation or prior information about the specific object to animate. Once trained on a set of videos depicting objects of the same category (e.g. faces, human bodies), our method can be applied to any object of this class. To achieve this, we decouple appearance and motion information using a self-supervised formulation. To support complex motions, we use a representation consisting of a set of learned keypoints along with their local affine transformations. A generator network models occlusions arising during target motions and combines the appearance extracted from the source image and the motion derived from the driving video. Our framework scores best on diverse benchmarks and on a variety of object categories. Our source code is publicly available.