论文标题
Terahertz金属光子晶体与电介质波导集成
Terahertz metallic photonic crystals integrated with dielectric waveguides
论文作者
论文摘要
紧凑和低损坏光子晶体波导在整合的Terahertz(THZ)应用中至关重要。与纯金属或介电光子晶体波导相比,混合(金属二电)集成波导为进一步改善场限制和传播损失提供了一种简单的方法。在这项工作中,我们研究了由金属光子晶体和0.1-1.0 Thz中的金属光子晶体和介电膜组成的杂交波导。基于金属支柱阵列(MPA)的光子晶体波导支持两种共振模式,包括基本和高阶横向磁(TM)模式,然后在0.45-0.55 THz中形成一个明显的带盖。高阶TM模式比基本模式显示出更高的限制,因此对MPA上的介电膜敏感。可以通过更改介电膜厚度和折射率来优化传播损失和场约束。调查表明,最低损失发生在0.68 THz,因为高阶TM模式THZ波紧密限制在杂交波导内。这项工作证明,基于金属光子晶体的这种混合波导有望作为紧凑的集成terahertz装置而发展。
Compact and low-loss photonic crystal waveguides are critical in integrated terahertz (THz) applications. Compared with pure metal or dielectric photonic crystal waveguides, hybrid (metal-dielectric) integrated waveguides provide a simple way to further improve the field confinement and the propagation loss. In this work, we investigate a hybrid waveguide consisting of metallic photonic crystals and dielectric films in 0.1-1.0 THz. Photonic crystal waveguides based on metal pillar arrays (MPAs) support two resonance modes including the fundamental and high-order transverse magnetic (TM) modes and then form one apparent bandgap in 0.45-0.55 THz. The high-order TM-mode shows higher confinement than the fundamental mode and are thus sensitive to the dielectric film on the MPAs. The propagation loss and field confinement can be optimized by changing the dielectric film thickness and refractive index. The investigation shows that the lowest loss occurs at 0.68 THz because the high-order TM-mode THz waves are tightly confined inside the hybrid waveguide. This work proves that such hybrid waveguides based on metallic photonic crystals are promising to develop as a compact integrated terahertz device.