论文标题

超声视频的自我监督的表示学习

Self-supervised Representation Learning for Ultrasound Video

论文作者

Jiao, Jianbo, Droste, Richard, Drukker, Lior, Papageorghiou, Aris T., Noble, J. Alison

论文摘要

深度学习的最新进展已经实现了医学图像分析的有希望的表现,而在大多数情况下,人类专家的地面确实对训练深层模型是必要的。实际上,这种注释的收集昂贵,并且对于医学成像应用可能会稀缺。因此,从未标记的原始数据中学习表示表示有重大兴趣。在本文中,我们提出了一种自我监督的学习方法,以从医学成像视频中学习有意义且可转移的表示,而无需任何类型的人类注释。我们假设为了学习这种表示,该模型应从未标记的数据中识别解剖结构。因此,我们强迫该模型通过数据本身的免费监督来解决解剖学意识的任务。具体而言,该模型旨在纠正重组视频剪辑的顺序,同时预测应用于视频剪辑的几何变换。胎儿超声视频的实验表明,所提出的方法可以有效地学习有意义且强大的表示,这些表示很好地转移到了标准平面检测和显着性预测等下游任务。

Recent advances in deep learning have achieved promising performance for medical image analysis, while in most cases ground-truth annotations from human experts are necessary to train the deep model. In practice, such annotations are expensive to collect and can be scarce for medical imaging applications. Therefore, there is significant interest in learning representations from unlabelled raw data. In this paper, we propose a self-supervised learning approach to learn meaningful and transferable representations from medical imaging video without any type of human annotation. We assume that in order to learn such a representation, the model should identify anatomical structures from the unlabelled data. Therefore we force the model to address anatomy-aware tasks with free supervision from the data itself. Specifically, the model is designed to correct the order of a reshuffled video clip and at the same time predict the geometric transformation applied to the video clip. Experiments on fetal ultrasound video show that the proposed approach can effectively learn meaningful and strong representations, which transfer well to downstream tasks like standard plane detection and saliency prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源