论文标题

共同学习推荐和做广告

Jointly Learning to Recommend and Advertise

论文作者

Zhao, Xiangyu, Zheng, Xudong, Yang, Xiwang, Liu, Xiaobing, Tang, Jiliang

论文摘要

在线推荐和广告是在线推荐平台的两个主要收入渠道(例如电子商务和新闻提要网站)。但是,大多数平台通过不同的技术分别优化不同团队的推荐和广告策略,这可能会导致次优的整体表现。为此,在本文中,我们提出了一个新颖的两级增强学习框架,以共同优化推荐和广告策略,其中第一级从长远来看会产生建议列表,以优化用户体验;然后,第二层将广告插入推荐列表中,这些列表可以平衡广告商的直接广告收入以及广告对长期用户体验的负面影响。具体来说,第一级解决了从大项目空间中选择子集项目的高组合动作空间问题;虽然第二级确定了三个内部相关的任务,即(i)是否插入AD,如果是,则(ii)最佳AD和(iii)插入的最佳位置。基于现实世界数据的实验结果证明了所提出的框架的有效性。我们发布了实施代码以减轻生殖率。

Online recommendation and advertising are two major income channels for online recommendation platforms (e.g. e-commerce and news feed site). However, most platforms optimize recommending and advertising strategies by different teams separately via different techniques, which may lead to suboptimal overall performances. To this end, in this paper, we propose a novel two-level reinforcement learning framework to jointly optimize the recommending and advertising strategies, where the first level generates a list of recommendations to optimize user experience in the long run; then the second level inserts ads into the recommendation list that can balance the immediate advertising revenue from advertisers and the negative influence of ads on long-term user experience. To be specific, the first level tackles high combinatorial action space problem that selects a subset items from the large item space; while the second level determines three internally related tasks, i.e., (i) whether to insert an ad, and if yes, (ii) the optimal ad and (iii) the optimal location to insert. The experimental results based on real-world data demonstrate the effectiveness of the proposed framework. We have released the implementation code to ease reproductivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源