论文标题

4d镜子式二元

4d mirror-like dualities

论文作者

Hwang, Chiung, Pasquetti, Sara, Sacchi, Matteo

论文摘要

我们构建了一个$ 4D $ $ \ MATHCAL {N} = 1 $理论的家族,我们称之为$ E^σ_ρ[USP(2n)$,它展示了一种新颖的$ 4D $ ir duality duality duality duality,非常让人想起$ 3D $ $ $ $ $ \ natcal {n} = 4 $ $ t^$ t^q的镜子二元性。我们从最近介绍的$ e [usp(2n)] $理论中获得$ e^σ_ρ[usp(2n)] $理论,遵循由分区标记的VEVS启动的RG流量$ρ$和$σ$,用于在两个操作员转换为$ usp(2n)$ usp(2n)$ usp(2n)$ ir ii ir ii ir ii ir ii if souss $ c. $ e [USP(2n)] $理论。这些VEV是我们在$ t [su(n)] $的瞬间图中打开的$ 4D $提升,以触发流量到$ t^σ_ρ[su(n)] $。实际上,$ e [USP(2n)] $理论,随着维度的减少和合适的实际质量变形,减少了$ t [su(n)] $理论。为了研究VEVS触发的RG流,我们根据$ t [su(n)$和$ e [usp(2n)] $ Theories制定了一种新策略。

We construct a family of $4d$ $\mathcal{N}=1$ theories that we call $E^σ_ρ[USp(2N)]$ which exhibit a novel type of $4d$ IR duality very reminiscent of the mirror duality enjoyed by the $3d$ $\mathcal{N}=4$ $T^σ_ρ[SU(N)]$ theories. We obtain the $E^σ_ρ[USp(2N)]$ theories from the recently introduced $E[USp(2N)]$ theory, by following the RG flow initiated by vevs labelled by partitions $ρ$ and $σ$ for two operators transforming in the antisymmetric representations of the $USp(2N) \times USp(2N)$ IR symmetries of the $E[USp(2N)]$ theory. These vevs are the $4d$ uplift of the ones we turn on for the moment maps of $T[SU(N)]$ to trigger the flow to $T^σ_ρ[SU(N)]$. Indeed the $E[USp(2N)]$ theory, upon dimensional reduction and suitable real mass deformations, reduces to the $T[SU(N)]$ theory. In order to study the RG flows triggered by the vevs we develop a new strategy based on the duality webs of the $T[SU(N)]$ and $E[USp(2N)]$ theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源