论文标题
大于三个的素数功能的素数功能的算法
An algorithm for the prime-counting function of primes larger than three
论文作者
论文摘要
计算较小或等于给定的实际数字的数量的素数$π(x)$的质数函数$π(x)$在数字理论上具有长期的兴趣。本手稿提出了一种使用时间复杂性计算$π(x)$的方法$ \ mathcal {o}(x^{1/2})$,而无需引入Riemann Zeta函数的非琐事零。
The prime-counting function $π(x)$ which computes the number of primes smaller or equal to a given real number has a long-standing interest in number theory. The present manuscript proposes a method to compute $π(x)$ with time complexity $\mathcal{O}(x^{1/2})$ without the need to introduce the non-trivial zeros of the Riemann zeta function.