论文标题

保存隐私的分布式聚类用于电气负载分析

Privacy-Preserving Distributed Clustering for Electrical Load Profiling

论文作者

Jia, Mengshuo, Wang, Yi, Shen, Chen, Hug, Gabriela

论文摘要

电气负载分析支持零售商和分销网络运营商对消费者的消费行为有更好的了解。但是,用于负载分析的传统聚类方法是集中的,需要访问所有智能电表数据,从而为消费者和零售商造成隐私问题。为了解决此问题,我们通过开发具有公私的加速平均共识(PP-AAC)算法,提出了一个保存隐私的分布式聚类框架,以进行负载分析。使用提出的框架,我们修改了几种常用的聚类方法,包括K-均值,模糊C均值和高斯混合模型,以提供隐私保护分布式聚类方法。这样,只能通过局部计算和相邻数据所有者之间的信息共享而无需牺牲隐私而执行负载分析。同时,与传统的集中式聚类方法相比,每个数据所有者所消耗的计算时间大大减少。分析了拟议的隐私分布式聚类框架的隐私和复杂性。拟议框架和拟议的PP-AAC算法的正确性,效率,有效性和保护特征是使用现实世界中的爱尔兰住宅数据集验证的。

Electrical load profiling supports retailers and distribution network operators in having a better understanding of the consumption behavior of consumers. However, traditional clustering methods for load profiling are centralized and require access to all the smart meter data, thus causing privacy issues for consumers and retailers. To tackle this issue, we propose a privacy-preserving distributed clustering framework for load profiling by developing a privacy-preserving accelerated average consensus (PP-AAC) algorithm with proven convergence. Using the proposed framework, we modify several commonly used clustering methods, including k-means, fuzzy C-means, and Gaussian mixture model, to provide privacy-preserving distributed clustering methods. In this way, load profiling can be performed only by local calculations and information sharing between neighboring data owners without sacrificing privacy. Meanwhile, compared to traditional centralized clustering methods, the computational time consumed by each data owner is significantly reduced. The privacy and complexity of the proposed privacy-preserving distributed clustering framework are analyzed. The correctness, efficiency, effectiveness, and privacy-preserving feature of the proposed framework and the proposed PP-AAC algorithm are verified using a real-world Irish residential dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源