论文标题

湍流环境对表面粗糙的影响:Kardar-Parisi-Zhang模型与随机Navier-Stokes方程相连

Effects of turbulent environment on the surface roughening: The Kardar-Parisi-Zhang model coupled to the stochastic Navier-Stokes equation

论文作者

Antonov, N. V., Gulitskiy, N. M., Kakin, P. I., Kostenko, M. M.

论文摘要

通过田间理论重新归一化组方法研究了对环境的湍流运动的非平衡临界行为(动力学表面粗糙)的Kardar-Parisi-Zhang模型。湍流运动用随机搅拌力的随机Navier-Stokes方程描述,其相关函数包括两个术语,可以考虑一个均能考虑湍流和热平衡中的流体。在扰动理论的领先顺序(一环近似)中进行的重新归一化组分析揭示了六种可能的缩放行为类型(通用类别)。空间尺寸的最有趣的值$ d = 2 $,〜$ 3 $对应于纯粹的湍流对流的通用类别,即kardar-parisi-parisi-zhang模型的非线性无关紧要。

The Kardar-Parisi-Zhang model of non-equilibrium critical behaviour (kinetic surface roughening) with turbulent motion of the environment taken into account is studied by the field theoretic renormalization group approach. The turbulent motion is described by the stochastic Navier-Stokes equation with the random stirring force whose correlation function includes two terms that allow one to account both for a turbulent fluid and for a fluid in thermal equilibrium. The renormalization group analysis performed in the leading order of perturbation theory (one-loop approximation) reveals six possible types of scaling behaviour (universality classes). The most interesting values of the spatial dimension $d=2$ and~$3$ correspond to the universality class of a pure turbulent advection where the nonlinearity of the Kardar--Parisi--Zhang model is irrelevant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源