论文标题

线性特征自动驾驶汽车定位的观察模型

Linear Features Observation Model for Autonomous Vehicle Localization

论文作者

Shipitko, Oleg, Kibalov, Vladislav, Abramov, Maxim

论文摘要

精确定位是自动驾驶汽车的核心能力。这是运动计划和执行的先决条件。诸如Kalman和粒子过滤器之类的公认的定位方法需要一个概率观察模型,以便给定系统状态向量(通常是车辆姿势和地图)计算测量的可能性。考虑到各种测量误差源,可以通过开发更复杂的观察模型来实现定位系统的较高精度。同时,模型必须简单地实时计算。本文提出了一个观察模型,用于视觉检测到的线性特征。此类功能的示例包括但不限于道路标记和道路边界。提出的观察模型描述了两个核心检测误差源:移位误差和角误差。它还考虑了假阳性检测的可能性。所提出的模型的结构允许将测量误差直接整合到由多通道数字图像表示的地图中。测量误差预先计算并将地图存储为图像会加快观察可能性计算和依次定位系统。对实际自动驾驶汽车的实验评估表明,所提出的模型允许在各种情况下进行精确且可靠的定位。

Precise localization is a core ability of an autonomous vehicle. It is a prerequisite for motion planning and execution. The well-established localization approaches such as Kalman and particle filters require a probabilistic observation model allowing to compute a likelihood of measurement given a system state vector, usually vehicle pose, and a map. The higher precision of the localization system may be achieved through the development of a more sophisticated observation model considering various measurement error sources. Meanwhile model needs to be simple to be computable in real-time. This paper proposes an observation model for visually detected linear features. Examples of such features include, but not limited to, road markings and road boundaries. The proposed observation model depicts two core detection error sources: shift error and angular error. It also considers the probability of false-positive detection. The structure of the proposed model allows precomputing and incorporating the measurement error directly into the map represented by a multichannel digital image. Measurement error precomputation and storing the map as an image speeds up observation likelihood computation and in turn localization system. The experimental evaluation on real autonomous vehicle demonstrates that the proposed model allows for precise and reliable localization in a variety of scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源