论文标题
列分解量子厅效应的微观理论
Microscopic theory for nematic fractional quantum Hall effect
论文作者
论文摘要
我们在热力学极限下分析了列分数量子霍尔效应(FQHH)的各种微观特性,并呈现微观汉密尔顿人的必要条件,以使列fqhe具有稳健性。退化基态歧管,基态能量和无间隙列表模式的分析表达式以紧凑的形式给出,输入相互作用和相应的基态结构因子。我们将中性激发的长波长极限与指南中心的度量变形联系在一起,并明确显示了列在量子临界点附近的列明模式的试验波函数家族。对于短距离相互作用,FQHH的动力学完全由基态结构因子的长波长部分确定。 $ν= 1/3 $的FQHH的特殊情况与Haffnian父母Hamiltonian的新理论见解进行了讨论,导致了许多严格的陈述和实验含义。
We analyse various microscopic properties of the nematic fractional quantum Hall effect (FQHN) in the thermodynamic limit, and present necessary conditions required of the microscopic Hamiltonians for the nematic FQHE to be robust. Analytical expressions for the degenerate ground state manifold, ground state energies, and gapless nematic modes are given in compact forms with the input interaction and the corresponding ground state structure factors. We relate the long wavelength limit of the neutral excitations to the guiding center metric deformation, and show explicitly the family of trial wavefunctions for the nematic modes with spatially varying nematic order near the quantum critical point. For short range interactions, the dynamics of the FQHN is completely determined by the long wavelength part of the ground state structure factor. The special case of the FQHN at $ν=1/3$ is discussed with new theoretical insights from the Haffnian parent Hamiltonian, leading to a number of rigorous statements and experimental implications.