论文标题

关于关键Lebesgue空间中轴对称性粘性Boussinesq系统的全球良好性

On the global well-posedness of axisymmetric viscous Boussinesq system in critical Lebesgue spaces

论文作者

Hanachi, Adalet, Houamed, Haroune, Zerguine, Mohamed

论文摘要

本文的贡献将集中在临界Lebesgue空间中的轴对称粘性Boussinesq系统的三维情况下的全球存在和唯一性主题。我们旨在得出最近在\ cite {gallay,gallay-sverak}中获得的经典二维和三维轴对称的纳维尔 - 斯托克斯方程的类似结果。粗略地说,我们本质上表明,如果初始数据$(v_0,ρ_0)$是轴对称的,$(ω_0,ρ_0)$属于关键空间$ l^1(ω)\ times l^1(\ MathBb {r} $ω= \ {(r,z)\ in \ mathbb {r}^2:r> 0 \} $,然后粘性boussinesq系统具有唯一的全局解决方案。

The contribution of this paper will be focused on the global existence and uniqueness topic in three-dimensional case of the axisymmetric viscous Boussinesq system in critical Lebesgue spaces. We aim at deriving analogous results for the classical two-dimensional and three-dimensional axisymmetric Navier-Stokes equations recently obtained in \cite{Gallay,Gallay-Sverak}. Roughly speaking, we show essentially that if the initial data $(v_0,ρ_0)$ is axisymmetric and $(ω_0,ρ_0)$ belongs to the critical space $L^1(Ω)\times L^1(\mathbb{R}^3)$, with $ω_0$ is the initial vorticity associated to $v_0$ and $Ω=\{(r,z)\in\mathbb{R}^2:r>0\}$, then the viscous Boussinesq system has a unique global solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源