论文标题
DC-Bert:有效上下文编码的解耦问题和文件
DC-BERT: Decoupling Question and Document for Efficient Contextual Encoding
论文作者
论文摘要
关于开放域问题回答的最新研究通过伯特(Bert)等预训练的语言模型来取得了显着的绩效提高。最先进的方法通常遵循“检索和读取”管道,并使用基于Bert的Reranker在将其馈入阅读器模块之前过滤检索的文档。 BERT检索器将问题的串联和每个检索文件作为输入。尽管这些方法在QA准确性方面取得了成功,但由于串联,它们几乎无法处理传入问题的高通量,每个问题都会与大量检索的文档一起收集。为了解决效率问题,我们提出了DC-Bert,这是一个具有双重BERT模型的脱钩的上下文编码框架:一个在线BERT,仅编码一个问题,以及一个脱机BERT,将所有文档编码并缓存其编码。在小队开放和自然问题的开放数据集上,DC-Bert在文件检索方面达到了10倍的加速,同时与最先进的方法相比,保留了QA的最多(约98%)的QA性能(约98%)。
Recent studies on open-domain question answering have achieved prominent performance improvement using pre-trained language models such as BERT. State-of-the-art approaches typically follow the "retrieve and read" pipeline and employ BERT-based reranker to filter retrieved documents before feeding them into the reader module. The BERT retriever takes as input the concatenation of question and each retrieved document. Despite the success of these approaches in terms of QA accuracy, due to the concatenation, they can barely handle high-throughput of incoming questions each with a large collection of retrieved documents. To address the efficiency problem, we propose DC-BERT, a decoupled contextual encoding framework that has dual BERT models: an online BERT which encodes the question only once, and an offline BERT which pre-encodes all the documents and caches their encodings. On SQuAD Open and Natural Questions Open datasets, DC-BERT achieves 10x speedup on document retrieval, while retaining most (about 98%) of the QA performance compared to state-of-the-art approaches for open-domain question answering.