论文标题
5G无线通信系统的大数据启用了频道模型
A Big Data Enabled Channel Model for 5G Wireless Communication Systems
论文作者
论文摘要
最近已经加速了第五代(5G)无线通信的标准化过程,最早将在2018年提供第一个商业5G服务。巨大的智能手机,新的复杂场景,大型频段,大型天线元素,庞大的天线元素以及密集的小单元将生成大型数据集并为5G通信带来大型大数据时代的5G通信。本文研究了大数据分析的各种应用,尤其是无线通信和渠道建模中的机器学习算法。我们建议一个大数据和机器学习启用无线通道模型框架。提出的渠道模型基于人工神经网络(ANN),包括前馈神经网络(FNN)和径向基函数神经网络(RBF-NN)。输入参数是变送器(TX)和接收器(RX)坐标,TX-RX距离和载波频率,而输出参数是通道统计属性,包括接收功率,均方根(RMS)延迟差(DS)和RMS角度差异(ASS)。用于训练和测试ANN的数据集是从实际通道测量值和基于几何的随机模型(GBSM)中收集的。仿真结果显示出良好的性能,并表明机器学习算法可能是用于将来基于测量的无线通道建模的强大分析工具。
The standardization process of the fifth generation (5G) wireless communications has recently been accelerated and the first commercial 5G services would be provided as early as in 2018. The increasing of enormous smartphones, new complex scenarios, large frequency bands, massive antenna elements, and dense small cells will generate big datasets and bring 5G communications to the era of big data. This paper investigates various applications of big data analytics, especially machine learning algorithms in wireless communications and channel modeling. We propose a big data and machine learning enabled wireless channel model framework. The proposed channel model is based on artificial neural networks (ANNs), including feed-forward neural network (FNN) and radial basis function neural network (RBF-NN). The input parameters are transmitter (Tx) and receiver (Rx) coordinates, Tx-Rx distance, and carrier frequency, while the output parameters are channel statistical properties, including the received power, root mean square (RMS) delay spread (DS), and RMS angle spreads (ASs). Datasets used to train and test the ANNs are collected from both real channel measurements and a geometry based stochastic model (GBSM). Simulation results show good performance and indicate that machine learning algorithms can be powerful analytical tools for future measurement-based wireless channel modeling.