论文标题
无边缘光子晶体谐振器中的自发脉冲形成
Spontaneous Pulse Formation in Edge-Less Photonic Crystal Resonators
论文作者
论文摘要
复杂的系统是组件及其集体新兴现象之间基本相互作用的探索基础。通过复杂的设计,Integrated Photonics提供了有趣的非线性相互作用,从而创造了新的光模式。特别是,典型的Kerr-Nonlinear谐振器具有足够强烈的行进波激励变得不稳定,而是产生由一些干扰波组成的图灵模式。这些谐振器还支持局部孤子脉冲作为单独的非线性固定态。 Kerr Solitons对于应用的通用性非常广,但不能从持续的激发中出现。在这里,我们探索了无边缘的光子晶格谐振器(PHCR),该光子晶格谐振器(PHCR)可以自发地形成孤子脉冲,以代替图灵模式。我们在单齐达尔模式工程方面设计了一个PHCR,以重新平衡Kerr-Nonlineare频率转移,以支持Soliton State,与群速度分散量如何平衡非线性。我们的实验通过超频频频测量来建立PHCR孤子作为模式锁定的脉冲,我们表征了它们的基本特性。我们的工作表明,纳米波长的纳米光设计扩大了光线的调色板。
Complex systems are a proving ground for fundamental interactions between components and their collective emergent phenomena. Through intricate design, integrated photonics offers intriguing nonlinear interactions that create new patterns of light. In particular, the canonical Kerr-nonlinear resonator becomes unstable with a sufficiently intense traveling-wave excitation, yielding instead a Turing pattern composed of a few interfering waves. These resonators also support the localized soliton pulse as a separate nonlinear stationary state. Kerr solitons are remarkably versatile for applications, but they cannot emerge from constant excitation. Here, we explore an edge-less photonic-crystal resonator (PhCR) that enables spontaneous formation of a soliton pulse in place of the Turing pattern. We design a PhCR in the regime of single-azimuthal-mode engineering to re-balance Kerr-nonlinear frequency shifts in favor of the soliton state, commensurate with how group-velocity dispersion balances nonlinearity. Our experiments establish PhCR solitons as mode-locked pulses by way of ultraprecise optical-frequency measurements, and we characterize their fundamental properties. Our work shows that sub-wavelength nanophotonic design expands the palette for nonlinear engineering of light.