论文标题

在MGD背景下的常规解耦部门和外部解决方案

Regular decoupling sector and exterior solutions in the context of MGD

论文作者

Contreras, Ernesto, Tello-Ortiz, Francisco, Maurya, S. K.

论文摘要

我们通过最小的几何变形方法实现了重力解耦,并通过在脱钩部门的Tolman-Oppenheimer--oppenheimer-volkoff方程中施加规律性条件来探索其对外部解决方案的影响。我们获得的是,可以用涉及种子解决方案度量的$ g_ {tt} $组件的积分来形式表示解耦函数。作为一个特别的例子,我们通过使用Schwarzschild外观作为种子来实现该方法,并获得扩展几何形状的渐近行为对应于具有恒定曲率的歧管。

We implement the Gravitational Decoupling through the Minimal Geometric Deformation method and explore its effect on exterior solutions by imposing a regularity condition in the Tolman--Oppenheimer--Volkoff equation of the decoupling sector. We obtain that the decoupling function can be expressed formally in terms of an integral involving the $g_{tt}$ component of the metric of the seed solution. As a particular example, we implement the method by using the Schwarzschild exterior as a seed and we obtain that the asymptotic behavior of the extended geometry corresponds to a manifold with constant curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源